Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mbfmcnt Structured version   Visualization version   Unicode version

Theorem mbfmcnt 29139
Description: All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.)
Assertion
Ref Expression
mbfmcnt  |-  ( O  e.  V  ->  ( ~P OMblFnM𝔅 )  =  ( RR  ^m  O ) )

Proof of Theorem mbfmcnt
Dummy variables  x  f  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwsiga 29001 . . . . . 6  |-  ( O  e.  V  ->  ~P O  e.  (sigAlgebra `  O
) )
2 elrnsiga 28997 . . . . . 6  |-  ( ~P O  e.  (sigAlgebra `  O
)  ->  ~P O  e.  U. ran sigAlgebra )
31, 2syl 17 . . . . 5  |-  ( O  e.  V  ->  ~P O  e.  U. ran sigAlgebra )
4 brsigarn 29055 . . . . . 6  |- 𝔅  e.  (sigAlgebra `  RR )
5 elrnsiga 28997 . . . . . 6  |-  (𝔅  e.  (sigAlgebra `  RR )  -> 𝔅  e.  U. ran sigAlgebra )
64, 5mp1i 13 . . . . 5  |-  ( O  e.  V  -> 𝔅  e.  U. ran sigAlgebra )
73, 6ismbfm 29123 . . . 4  |-  ( O  e.  V  ->  (
f  e.  ( ~P OMblFnM𝔅 ) 
<->  ( f  e.  ( U.𝔅  ^m  U. ~P O )  /\  A. x  e. 𝔅  ( `' f " x
)  e.  ~P O
) ) )
8 unibrsiga 29057 . . . . . . . . . 10  |-  U.𝔅  =  RR
9 reex 9656 . . . . . . . . . 10  |-  RR  e.  _V
108, 9eqeltri 2536 . . . . . . . . 9  |-  U.𝔅  e.  _V
11 unipw 4664 . . . . . . . . . 10  |-  U. ~P O  =  O
12 elex 3066 . . . . . . . . . 10  |-  ( O  e.  V  ->  O  e.  _V )
1311, 12syl5eqel 2544 . . . . . . . . 9  |-  ( O  e.  V  ->  U. ~P O  e.  _V )
14 elmapg 7511 . . . . . . . . 9  |-  ( ( U.𝔅  e.  _V  /\  U. ~P O  e.  _V )  ->  ( f  e.  ( U.𝔅  ^m  U. ~P O )  <-> 
f : U. ~P O
--> U.𝔅
) )
1510, 13, 14sylancr 674 . . . . . . . 8  |-  ( O  e.  V  ->  (
f  e.  ( U.𝔅  ^m  U. ~P O )  <->  f : U. ~P O --> U.𝔅
) )
1611feq2i 5743 . . . . . . . 8  |-  ( f : U. ~P O --> U.𝔅  <->  f : O --> U.𝔅
)
1715, 16syl6bb 269 . . . . . . 7  |-  ( O  e.  V  ->  (
f  e.  ( U.𝔅  ^m  U. ~P O )  <->  f : O
--> U.𝔅
) )
18 ffn 5751 . . . . . . 7  |-  ( f : O --> U.𝔅  ->  f  Fn  O )
1917, 18syl6bi 236 . . . . . 6  |-  ( O  e.  V  ->  (
f  e.  ( U.𝔅  ^m  U. ~P O )  ->  f  Fn  O ) )
20 elpreima 6025 . . . . . . . . . 10  |-  ( f  Fn  O  ->  (
y  e.  ( `' f " x )  <-> 
( y  e.  O  /\  ( f `  y
)  e.  x ) ) )
21 simpl 463 . . . . . . . . . 10  |-  ( ( y  e.  O  /\  ( f `  y
)  e.  x )  ->  y  e.  O
)
2220, 21syl6bi 236 . . . . . . . . 9  |-  ( f  Fn  O  ->  (
y  e.  ( `' f " x )  ->  y  e.  O
) )
2322ssrdv 3450 . . . . . . . 8  |-  ( f  Fn  O  ->  ( `' f " x
)  C_  O )
24 vex 3060 . . . . . . . . . . 11  |-  f  e. 
_V
2524cnvex 6767 . . . . . . . . . 10  |-  `' f  e.  _V
26 imaexg 6757 . . . . . . . . . 10  |-  ( `' f  e.  _V  ->  ( `' f " x
)  e.  _V )
2725, 26ax-mp 5 . . . . . . . . 9  |-  ( `' f " x )  e.  _V
2827elpw 3969 . . . . . . . 8  |-  ( ( `' f " x
)  e.  ~P O  <->  ( `' f " x
)  C_  O )
2923, 28sylibr 217 . . . . . . 7  |-  ( f  Fn  O  ->  ( `' f " x
)  e.  ~P O
)
3029ralrimivw 2815 . . . . . 6  |-  ( f  Fn  O  ->  A. x  e. 𝔅  ( `' f " x
)  e.  ~P O
)
3119, 30syl6 34 . . . . 5  |-  ( O  e.  V  ->  (
f  e.  ( U.𝔅  ^m  U. ~P O )  ->  A. x  e. 𝔅  ( `' f " x
)  e.  ~P O
) )
3231pm4.71d 644 . . . 4  |-  ( O  e.  V  ->  (
f  e.  ( U.𝔅  ^m  U. ~P O )  <->  ( f  e.  ( U.𝔅  ^m  U. ~P O )  /\  A. x  e. 𝔅  ( `' f " x
)  e.  ~P O
) ) )
337, 32bitr4d 264 . . 3  |-  ( O  e.  V  ->  (
f  e.  ( ~P OMblFnM𝔅 ) 
<->  f  e.  ( U.𝔅  ^m  U. ~P O ) ) )
3433eqrdv 2460 . 2  |-  ( O  e.  V  ->  ( ~P OMblFnM𝔅 )  =  ( U.𝔅  ^m  U. ~P O ) )
358, 11oveq12i 6327 . 2  |-  ( U.𝔅  ^m  U. ~P O )  =  ( RR  ^m  O )
3634, 35syl6eq 2512 1  |-  ( O  e.  V  ->  ( ~P OMblFnM𝔅 )  =  ( RR  ^m  O ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1455    e. wcel 1898   A.wral 2749   _Vcvv 3057    C_ wss 3416   ~Pcpw 3963   U.cuni 4212   `'ccnv 4852   ran crn 4854   "cima 4856    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6315    ^m cmap 7498   RRcr 9564  sigAlgebracsiga 28978  𝔅cbrsiga 29052  MblFnMcmbfm 29121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4539  ax-nul 4548  ax-pow 4595  ax-pr 4653  ax-un 6610  ax-cnex 9621  ax-resscn 9622  ax-pre-lttri 9639  ax-pre-lttrn 9640
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-fal 1461  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-br 4417  df-opab 4476  df-mpt 4477  df-id 4768  df-po 4774  df-so 4775  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6318  df-oprab 6319  df-mpt2 6320  df-1st 6820  df-2nd 6821  df-er 7389  df-map 7500  df-en 7596  df-dom 7597  df-sdom 7598  df-pnf 9703  df-mnf 9704  df-xr 9705  df-ltxr 9706  df-le 9707  df-ioo 11668  df-topgen 15391  df-top 19970  df-bases 19971  df-siga 28979  df-sigagen 29010  df-brsiga 29053  df-mbfm 29122
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator