MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfimaopnlem Structured version   Unicode version

Theorem mbfimaopnlem 22228
Description: Lemma for mbfimaopn 22229. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
mbfimaopn.1  |-  J  =  ( TopOpen ` fld )
mbfimaopn.2  |-  G  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
mbfimaopn.3  |-  B  =  ( (,) " ( QQ  X.  QQ ) )
mbfimaopn.4  |-  K  =  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )
Assertion
Ref Expression
mbfimaopnlem  |-  ( ( F  e. MblFn  /\  A  e.  J )  ->  ( `' F " A )  e.  dom  vol )
Distinct variable groups:    x, A    x, y, B    x, F, y    x, G, y    x, J, y
Allowed substitution hints:    A( y)    K( x, y)

Proof of Theorem mbfimaopnlem
Dummy variables  t 
z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfimaopn.2 . . . . . . . 8  |-  G  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  (
_i  x.  y )
) )
2 eqid 2454 . . . . . . . 8  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
3 mbfimaopn.1 . . . . . . . 8  |-  J  =  ( TopOpen ` fld )
41, 2, 3cnrehmeo 21619 . . . . . . 7  |-  G  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
) Homeo J )
5 hmeocn 20427 . . . . . . 7  |-  ( G  e.  ( ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
) Homeo J )  ->  G  e.  ( (
( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J ) )
64, 5ax-mp 5 . . . . . 6  |-  G  e.  ( ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
)  Cn  J )
7 cnima 19933 . . . . . 6  |-  ( ( G  e.  ( ( ( topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  Cn  J )  /\  A  e.  J
)  ->  ( `' G " A )  e.  ( ( topGen `  ran  (,) )  tX  ( topGen ` 
ran  (,) ) ) )
86, 7mpan 668 . . . . 5  |-  ( A  e.  J  ->  ( `' G " A )  e.  ( ( topGen ` 
ran  (,) )  tX  ( topGen `
 ran  (,) )
) )
9 mbfimaopn.3 . . . . . . . . 9  |-  B  =  ( (,) " ( QQ  X.  QQ ) )
109fveq2i 5851 . . . . . . . 8  |-  ( topGen `  B )  =  (
topGen `  ( (,) " ( QQ  X.  QQ ) ) )
1110tgqioo 21471 . . . . . . 7  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  B )
1211, 11oveq12i 6282 . . . . . 6  |-  ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  =  ( (
topGen `  B )  tX  ( topGen `  B )
)
13 qtopbas 21432 . . . . . . . 8  |-  ( (,) " ( QQ  X.  QQ ) )  e.  TopBases
149, 13eqeltri 2538 . . . . . . 7  |-  B  e.  TopBases
15 txbasval 20273 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  B  e. 
TopBases )  ->  ( ( topGen `
 B )  tX  ( topGen `  B )
)  =  ( B 
tX  B ) )
1614, 14, 15mp2an 670 . . . . . 6  |-  ( (
topGen `  B )  tX  ( topGen `  B )
)  =  ( B 
tX  B )
17 mbfimaopn.4 . . . . . . . 8  |-  K  =  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )
1817txval 20231 . . . . . . 7  |-  ( ( B  e.  TopBases  /\  B  e. 
TopBases )  ->  ( B  tX  B )  =  (
topGen `  K ) )
1914, 14, 18mp2an 670 . . . . . 6  |-  ( B 
tX  B )  =  ( topGen `  K )
2012, 16, 193eqtri 2487 . . . . 5  |-  ( (
topGen `  ran  (,) )  tX  ( topGen `  ran  (,) )
)  =  ( topGen `  K )
218, 20syl6eleq 2552 . . . 4  |-  ( A  e.  J  ->  ( `' G " A )  e.  ( topGen `  K
) )
2217txbas 20234 . . . . . 6  |-  ( ( B  e.  TopBases  /\  B  e. 
TopBases )  ->  K  e.  TopBases )
2314, 14, 22mp2an 670 . . . . 5  |-  K  e.  TopBases
24 eltg3 19630 . . . . 5  |-  ( K  e.  TopBases  ->  ( ( `' G " A )  e.  ( topGen `  K
)  <->  E. t ( t 
C_  K  /\  ( `' G " A )  =  U. t ) ) )
2523, 24ax-mp 5 . . . 4  |-  ( ( `' G " A )  e.  ( topGen `  K
)  <->  E. t ( t 
C_  K  /\  ( `' G " A )  =  U. t ) )
2621, 25sylib 196 . . 3  |-  ( A  e.  J  ->  E. t
( t  C_  K  /\  ( `' G " A )  =  U. t ) )
2726adantl 464 . 2  |-  ( ( F  e. MblFn  /\  A  e.  J )  ->  E. t
( t  C_  K  /\  ( `' G " A )  =  U. t ) )
281cnref1o 11216 . . . . . . . 8  |-  G :
( RR  X.  RR )
-1-1-onto-> CC
29 f1ofo 5805 . . . . . . . 8  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  G :
( RR  X.  RR ) -onto-> CC )
3028, 29ax-mp 5 . . . . . . 7  |-  G :
( RR  X.  RR ) -onto-> CC
31 elssuni 4264 . . . . . . . . 9  |-  ( A  e.  J  ->  A  C_ 
U. J )
323cnfldtopon 21456 . . . . . . . . . 10  |-  J  e.  (TopOn `  CC )
3332toponunii 19600 . . . . . . . . 9  |-  CC  =  U. J
3431, 33syl6sseqr 3536 . . . . . . . 8  |-  ( A  e.  J  ->  A  C_  CC )
3534ad2antlr 724 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  A  C_  CC )
36 foimacnv 5815 . . . . . . 7  |-  ( ( G : ( RR 
X.  RR ) -onto-> CC 
/\  A  C_  CC )  ->  ( G "
( `' G " A ) )  =  A )
3730, 35, 36sylancr 661 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( G " ( `' G " A ) )  =  A )
38 simprr 755 . . . . . . . 8  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' G " A )  = 
U. t )
3938imaeq2d 5325 . . . . . . 7  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( G " ( `' G " A ) )  =  ( G " U. t ) )
40 imauni 6133 . . . . . . 7  |-  ( G
" U. t )  =  U_ w  e.  t  ( G "
w )
4139, 40syl6eq 2511 . . . . . 6  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( G " ( `' G " A ) )  = 
U_ w  e.  t  ( G " w
) )
4237, 41eqtr3d 2497 . . . . 5  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  A  =  U_ w  e.  t  ( G " w ) )
4342imaeq2d 5325 . . . 4  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' F " A )  =  ( `' F " U_ w  e.  t 
( G " w
) ) )
44 imaiun 6132 . . . 4  |-  ( `' F " U_ w  e.  t  ( G " w ) )  = 
U_ w  e.  t  ( `' F "
( G " w
) )
4543, 44syl6eq 2511 . . 3  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' F " A )  = 
U_ w  e.  t  ( `' F "
( G " w
) ) )
46 ssdomg 7554 . . . . . . 7  |-  ( K  e.  TopBases  ->  ( t  C_  K  ->  t  ~<_  K ) )
4723, 46ax-mp 5 . . . . . 6  |-  ( t 
C_  K  ->  t  ~<_  K )
48 omelon 8054 . . . . . . . . . . 11  |-  om  e.  On
49 nnenom 12072 . . . . . . . . . . . 12  |-  NN  ~~  om
5049ensymi 7558 . . . . . . . . . . 11  |-  om  ~~  NN
51 isnumi 8318 . . . . . . . . . . 11  |-  ( ( om  e.  On  /\  om 
~~  NN )  ->  NN  e.  dom  card )
5248, 50, 51mp2an 670 . . . . . . . . . 10  |-  NN  e.  dom  card
53 qnnen 14031 . . . . . . . . . . . . . . . . . . . 20  |-  QQ  ~~  NN
54 xpen 7673 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( QQ  ~~  NN  /\  QQ  ~~  NN )  -> 
( QQ  X.  QQ )  ~~  ( NN  X.  NN ) )
5553, 53, 54mp2an 670 . . . . . . . . . . . . . . . . . . 19  |-  ( QQ 
X.  QQ )  ~~  ( NN  X.  NN )
56 xpnnen 14026 . . . . . . . . . . . . . . . . . . 19  |-  ( NN 
X.  NN )  ~~  NN
5755, 56entri 7562 . . . . . . . . . . . . . . . . . 18  |-  ( QQ 
X.  QQ )  ~~  NN
5857, 49entr2i 7563 . . . . . . . . . . . . . . . . 17  |-  om  ~~  ( QQ  X.  QQ )
59 isnumi 8318 . . . . . . . . . . . . . . . . 17  |-  ( ( om  e.  On  /\  om 
~~  ( QQ  X.  QQ ) )  ->  ( QQ  X.  QQ )  e. 
dom  card )
6048, 58, 59mp2an 670 . . . . . . . . . . . . . . . 16  |-  ( QQ 
X.  QQ )  e. 
dom  card
61 ioof 11625 . . . . . . . . . . . . . . . . . 18  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
62 ffun 5715 . . . . . . . . . . . . . . . . . 18  |-  ( (,)
: ( RR*  X.  RR* )
--> ~P RR  ->  Fun  (,) )
6361, 62ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  Fun  (,)
64 qssre 11193 . . . . . . . . . . . . . . . . . . . 20  |-  QQ  C_  RR
65 ressxr 9626 . . . . . . . . . . . . . . . . . . . 20  |-  RR  C_  RR*
6664, 65sstri 3498 . . . . . . . . . . . . . . . . . . 19  |-  QQ  C_  RR*
67 xpss12 5096 . . . . . . . . . . . . . . . . . . 19  |-  ( ( QQ  C_  RR*  /\  QQ  C_ 
RR* )  ->  ( QQ  X.  QQ )  C_  ( RR*  X.  RR* )
)
6866, 66, 67mp2an 670 . . . . . . . . . . . . . . . . . 18  |-  ( QQ 
X.  QQ )  C_  ( RR*  X.  RR* )
6961fdmi 5718 . . . . . . . . . . . . . . . . . 18  |-  dom  (,)  =  ( RR*  X.  RR* )
7068, 69sseqtr4i 3522 . . . . . . . . . . . . . . . . 17  |-  ( QQ 
X.  QQ )  C_  dom  (,)
71 fores 5786 . . . . . . . . . . . . . . . . 17  |-  ( ( Fun  (,)  /\  ( QQ  X.  QQ )  C_  dom  (,) )  ->  ( (,)  |`  ( QQ  X.  QQ ) ) : ( QQ  X.  QQ )
-onto-> ( (,) " ( QQ  X.  QQ ) ) )
7263, 70, 71mp2an 670 . . . . . . . . . . . . . . . 16  |-  ( (,)  |`  ( QQ  X.  QQ ) ) : ( QQ  X.  QQ )
-onto-> ( (,) " ( QQ  X.  QQ ) )
73 fodomnum 8429 . . . . . . . . . . . . . . . 16  |-  ( ( QQ  X.  QQ )  e.  dom  card  ->  ( ( (,)  |`  ( QQ  X.  QQ ) ) : ( QQ  X.  QQ ) -onto-> ( (,) " ( QQ  X.  QQ ) )  ->  ( (,) " ( QQ  X.  QQ ) )  ~<_  ( QQ  X.  QQ ) ) )
7460, 72, 73mp2 9 . . . . . . . . . . . . . . 15  |-  ( (,) " ( QQ  X.  QQ ) )  ~<_  ( QQ 
X.  QQ )
759, 74eqbrtri 4458 . . . . . . . . . . . . . 14  |-  B  ~<_  ( QQ  X.  QQ )
76 domentr 7567 . . . . . . . . . . . . . 14  |-  ( ( B  ~<_  ( QQ  X.  QQ )  /\  ( QQ  X.  QQ )  ~~  NN )  ->  B  ~<_  NN )
7775, 57, 76mp2an 670 . . . . . . . . . . . . 13  |-  B  ~<_  NN
7814elexi 3116 . . . . . . . . . . . . . 14  |-  B  e. 
_V
7978xpdom1 7609 . . . . . . . . . . . . 13  |-  ( B  ~<_  NN  ->  ( B  X.  B )  ~<_  ( NN 
X.  B ) )
8077, 79ax-mp 5 . . . . . . . . . . . 12  |-  ( B  X.  B )  ~<_  ( NN  X.  B )
81 nnex 10537 . . . . . . . . . . . . . 14  |-  NN  e.  _V
8281xpdom2 7605 . . . . . . . . . . . . 13  |-  ( B  ~<_  NN  ->  ( NN  X.  B )  ~<_  ( NN 
X.  NN ) )
8377, 82ax-mp 5 . . . . . . . . . . . 12  |-  ( NN 
X.  B )  ~<_  ( NN  X.  NN )
84 domtr 7561 . . . . . . . . . . . 12  |-  ( ( ( B  X.  B
)  ~<_  ( NN  X.  B )  /\  ( NN  X.  B )  ~<_  ( NN  X.  NN ) )  ->  ( B  X.  B )  ~<_  ( NN 
X.  NN ) )
8580, 83, 84mp2an 670 . . . . . . . . . . 11  |-  ( B  X.  B )  ~<_  ( NN  X.  NN )
86 domentr 7567 . . . . . . . . . . 11  |-  ( ( ( B  X.  B
)  ~<_  ( NN  X.  NN )  /\  ( NN  X.  NN )  ~~  NN )  ->  ( B  X.  B )  ~<_  NN )
8785, 56, 86mp2an 670 . . . . . . . . . 10  |-  ( B  X.  B )  ~<_  NN
88 numdom 8410 . . . . . . . . . 10  |-  ( ( NN  e.  dom  card  /\  ( B  X.  B
)  ~<_  NN )  -> 
( B  X.  B
)  e.  dom  card )
8952, 87, 88mp2an 670 . . . . . . . . 9  |-  ( B  X.  B )  e. 
dom  card
90 eqid 2454 . . . . . . . . . . 11  |-  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  =  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )
91 vex 3109 . . . . . . . . . . . 12  |-  x  e. 
_V
92 vex 3109 . . . . . . . . . . . 12  |-  y  e. 
_V
9391, 92xpex 6577 . . . . . . . . . . 11  |-  ( x  X.  y )  e. 
_V
9490, 93fnmpt2i 6842 . . . . . . . . . 10  |-  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  Fn  ( B  X.  B )
95 dffn4 5783 . . . . . . . . . 10  |-  ( ( x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )  Fn  ( B  X.  B )  <->  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) ) : ( B  X.  B
) -onto-> ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) ) )
9694, 95mpbi 208 . . . . . . . . 9  |-  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) ) : ( B  X.  B ) -onto-> ran  (
x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )
97 fodomnum 8429 . . . . . . . . 9  |-  ( ( B  X.  B )  e.  dom  card  ->  ( ( x  e.  B ,  y  e.  B  |->  ( x  X.  y
) ) : ( B  X.  B )
-onto->
ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  ->  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y
) )  ~<_  ( B  X.  B ) ) )
9889, 96, 97mp2 9 . . . . . . . 8  |-  ran  (
x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )  ~<_  ( B  X.  B )
99 domtr 7561 . . . . . . . 8  |-  ( ( ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  ~<_  ( B  X.  B )  /\  ( B  X.  B )  ~<_  NN )  ->  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  ~<_  NN )
10098, 87, 99mp2an 670 . . . . . . 7  |-  ran  (
x  e.  B , 
y  e.  B  |->  ( x  X.  y ) )  ~<_  NN
10117, 100eqbrtri 4458 . . . . . 6  |-  K  ~<_  NN
102 domtr 7561 . . . . . 6  |-  ( ( t  ~<_  K  /\  K  ~<_  NN )  ->  t  ~<_  NN )
10347, 101, 102sylancl 660 . . . . 5  |-  ( t 
C_  K  ->  t  ~<_  NN )
104103ad2antrl 725 . . . 4  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  t  ~<_  NN )
10517eleq2i 2532 . . . . . . . . 9  |-  ( w  e.  K  <->  w  e.  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y
) ) )
10690, 93elrnmpt2 6388 . . . . . . . . 9  |-  ( w  e.  ran  ( x  e.  B ,  y  e.  B  |->  ( x  X.  y ) )  <->  E. x  e.  B  E. y  e.  B  w  =  ( x  X.  y ) )
107105, 106bitri 249 . . . . . . . 8  |-  ( w  e.  K  <->  E. x  e.  B  E. y  e.  B  w  =  ( x  X.  y
) )
108 elin 3673 . . . . . . . . . . . . 13  |-  ( z  e.  ( ( `' ( Re  o.  F
) " x )  i^i  ( `' ( Im  o.  F )
" y ) )  <-> 
( z  e.  ( `' ( Re  o.  F ) " x
)  /\  z  e.  ( `' ( Im  o.  F ) " y
) ) )
109 mbff 22200 . . . . . . . . . . . . . . . . . . . 20  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
110109adantr 463 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  F : dom  F --> CC )
111 fvco3 5925 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( (
Re  o.  F ) `  z )  =  ( Re `  ( F `
 z ) ) )
112110, 111sylan 469 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( Re  o.  F
) `  z )  =  ( Re `  ( F `  z ) ) )
113112eleq1d 2523 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( Re  o.  F ) `  z
)  e.  x  <->  ( Re `  ( F `  z
) )  e.  x
) )
114 fvco3 5925 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : dom  F --> CC  /\  z  e.  dom  F )  ->  ( (
Im  o.  F ) `  z )  =  ( Im `  ( F `
 z ) ) )
115110, 114sylan 469 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( Im  o.  F
) `  z )  =  ( Im `  ( F `  z ) ) )
116115eleq1d 2523 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( Im  o.  F ) `  z
)  e.  y  <->  ( Im `  ( F `  z
) )  e.  y ) )
117113, 116anbi12d 708 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y )  <-> 
( ( Re `  ( F `  z ) )  e.  x  /\  ( Im `  ( F `
 z ) )  e.  y ) ) )
118110ffvelrnda 6007 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  ( F `  z )  e.  CC )
119 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  ( F `  z )  ->  (
Re `  w )  =  ( Re `  ( F `  z ) ) )
120 fveq2 5848 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( w  =  ( F `  z )  ->  (
Im `  w )  =  ( Im `  ( F `  z ) ) )
121119, 120opeq12d 4211 . . . . . . . . . . . . . . . . . . . . 21  |-  ( w  =  ( F `  z )  ->  <. (
Re `  w ) ,  ( Im `  w ) >.  =  <. ( Re `  ( F `
 z ) ) ,  ( Im `  ( F `  z ) ) >. )
1221cnrecnv 13080 . . . . . . . . . . . . . . . . . . . . 21  |-  `' G  =  ( w  e.  CC  |->  <. ( Re `  w ) ,  ( Im `  w )
>. )
123 opex 4701 . . . . . . . . . . . . . . . . . . . . 21  |-  <. (
Re `  ( F `  z ) ) ,  ( Im `  ( F `  z )
) >.  e.  _V
124121, 122, 123fvmpt 5931 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F `  z )  e.  CC  ->  ( `' G `  ( F `
 z ) )  =  <. ( Re `  ( F `  z ) ) ,  ( Im
`  ( F `  z ) ) >.
)
125118, 124syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  ( `' G `  ( F `
 z ) )  =  <. ( Re `  ( F `  z ) ) ,  ( Im
`  ( F `  z ) ) >.
)
126125eleq1d 2523 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( `' G `  ( F `  z ) )  e.  ( x  X.  y )  <->  <. ( Re
`  ( F `  z ) ) ,  ( Im `  ( F `  z )
) >.  e.  ( x  X.  y ) ) )
127118biantrurd 506 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( `' G `  ( F `  z ) )  e.  ( x  X.  y )  <->  ( ( F `  z )  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) ) ) )
128126, 127bitr3d 255 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  ( <. ( Re `  ( F `  z )
) ,  ( Im
`  ( F `  z ) ) >.  e.  ( x  X.  y
)  <->  ( ( F `
 z )  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) ) ) )
129 opelxp 5018 . . . . . . . . . . . . . . . . 17  |-  ( <.
( Re `  ( F `  z )
) ,  ( Im
`  ( F `  z ) ) >.  e.  ( x  X.  y
)  <->  ( ( Re
`  ( F `  z ) )  e.  x  /\  ( Im
`  ( F `  z ) )  e.  y ) )
130 f1ocnv 5810 . . . . . . . . . . . . . . . . . . . 20  |-  ( G : ( RR  X.  RR ) -1-1-onto-> CC  ->  `' G : CC -1-1-onto-> ( RR  X.  RR ) )
131 f1ofn 5799 . . . . . . . . . . . . . . . . . . . 20  |-  ( `' G : CC -1-1-onto-> ( RR  X.  RR )  ->  `' G  Fn  CC )
13228, 130, 131mp2b 10 . . . . . . . . . . . . . . . . . . 19  |-  `' G  Fn  CC
133 elpreima 5983 . . . . . . . . . . . . . . . . . . 19  |-  ( `' G  Fn  CC  ->  ( ( F `  z
)  e.  ( `' `' G " ( x  X.  y ) )  <-> 
( ( F `  z )  e.  CC  /\  ( `' G `  ( F `  z ) )  e.  ( x  X.  y ) ) ) )
134132, 133ax-mp 5 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  z )  e.  ( `' `' G " ( x  X.  y ) )  <->  ( ( F `  z )  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) ) )
135 imacnvcnv 5455 . . . . . . . . . . . . . . . . . . 19  |-  ( `' `' G " ( x  X.  y ) )  =  ( G "
( x  X.  y
) )
136135eleq2i 2532 . . . . . . . . . . . . . . . . . 18  |-  ( ( F `  z )  e.  ( `' `' G " ( x  X.  y ) )  <->  ( F `  z )  e.  ( G " ( x  X.  y ) ) )
137134, 136bitr3i 251 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  z
)  e.  CC  /\  ( `' G `  ( F `
 z ) )  e.  ( x  X.  y ) )  <->  ( F `  z )  e.  ( G " ( x  X.  y ) ) )
138128, 129, 1373bitr3g 287 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( Re `  ( F `  z ) )  e.  x  /\  ( Im `  ( F `
 z ) )  e.  y )  <->  ( F `  z )  e.  ( G " ( x  X.  y ) ) ) )
139117, 138bitrd 253 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  /\  z  e.  dom  F )  ->  (
( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y )  <-> 
( F `  z
)  e.  ( G
" ( x  X.  y ) ) ) )
140139pm5.32da 639 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
z  e.  dom  F  /\  ( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) )  <->  ( z  e. 
dom  F  /\  ( F `  z )  e.  ( G " (
x  X.  y ) ) ) ) )
141 ref 13027 . . . . . . . . . . . . . . . . . . 19  |-  Re : CC
--> RR
142 fco 5723 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Re : CC --> RR  /\  F : dom  F --> CC )  ->  ( Re  o.  F ) : dom  F --> RR )
143141, 109, 142sylancr 661 . . . . . . . . . . . . . . . . . 18  |-  ( F  e. MblFn  ->  ( Re  o.  F ) : dom  F --> RR )
144 ffn 5713 . . . . . . . . . . . . . . . . . 18  |-  ( ( Re  o.  F ) : dom  F --> RR  ->  ( Re  o.  F )  Fn  dom  F )
145 elpreima 5983 . . . . . . . . . . . . . . . . . 18  |-  ( ( Re  o.  F )  Fn  dom  F  -> 
( z  e.  ( `' ( Re  o.  F ) " x
)  <->  ( z  e. 
dom  F  /\  (
( Re  o.  F
) `  z )  e.  x ) ) )
146143, 144, 1453syl 20 . . . . . . . . . . . . . . . . 17  |-  ( F  e. MblFn  ->  ( z  e.  ( `' ( Re  o.  F ) "
x )  <->  ( z  e.  dom  F  /\  (
( Re  o.  F
) `  z )  e.  x ) ) )
147 imf 13028 . . . . . . . . . . . . . . . . . . 19  |-  Im : CC
--> RR
148 fco 5723 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Im : CC --> RR  /\  F : dom  F --> CC )  ->  ( Im  o.  F ) : dom  F --> RR )
149147, 109, 148sylancr 661 . . . . . . . . . . . . . . . . . 18  |-  ( F  e. MblFn  ->  ( Im  o.  F ) : dom  F --> RR )
150 ffn 5713 . . . . . . . . . . . . . . . . . 18  |-  ( ( Im  o.  F ) : dom  F --> RR  ->  ( Im  o.  F )  Fn  dom  F )
151 elpreima 5983 . . . . . . . . . . . . . . . . . 18  |-  ( ( Im  o.  F )  Fn  dom  F  -> 
( z  e.  ( `' ( Im  o.  F ) " y
)  <->  ( z  e. 
dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) )
152149, 150, 1513syl 20 . . . . . . . . . . . . . . . . 17  |-  ( F  e. MblFn  ->  ( z  e.  ( `' ( Im  o.  F ) "
y )  <->  ( z  e.  dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) )
153146, 152anbi12d 708 . . . . . . . . . . . . . . . 16  |-  ( F  e. MblFn  ->  ( ( z  e.  ( `' ( Re  o.  F )
" x )  /\  z  e.  ( `' ( Im  o.  F
) " y ) )  <->  ( ( z  e.  dom  F  /\  ( ( Re  o.  F ) `  z
)  e.  x )  /\  ( z  e. 
dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) ) )
154 anandi 826 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  dom  F  /\  ( ( ( Re  o.  F ) `  z )  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) )  <->  ( ( z  e.  dom  F  /\  ( ( Re  o.  F ) `  z
)  e.  x )  /\  ( z  e. 
dom  F  /\  (
( Im  o.  F
) `  z )  e.  y ) ) )
155153, 154syl6bbr 263 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( ( z  e.  ( `' ( Re  o.  F )
" x )  /\  z  e.  ( `' ( Im  o.  F
) " y ) )  <->  ( z  e. 
dom  F  /\  (
( ( Re  o.  F ) `  z
)  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) ) ) )
156155adantr 463 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
z  e.  ( `' ( Re  o.  F
) " x )  /\  z  e.  ( `' ( Im  o.  F ) " y
) )  <->  ( z  e.  dom  F  /\  (
( ( Re  o.  F ) `  z
)  e.  x  /\  ( ( Im  o.  F ) `  z
)  e.  y ) ) ) )
157 ffn 5713 . . . . . . . . . . . . . . . 16  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
158 elpreima 5983 . . . . . . . . . . . . . . . 16  |-  ( F  Fn  dom  F  -> 
( z  e.  ( `' F " ( G
" ( x  X.  y ) ) )  <-> 
( z  e.  dom  F  /\  ( F `  z )  e.  ( G " ( x  X.  y ) ) ) ) )
159109, 157, 1583syl 20 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( z  e.  ( `' F "
( G " (
x  X.  y ) ) )  <->  ( z  e.  dom  F  /\  ( F `  z )  e.  ( G " (
x  X.  y ) ) ) ) )
160159adantr 463 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( z  e.  ( `' F "
( G " (
x  X.  y ) ) )  <->  ( z  e.  dom  F  /\  ( F `  z )  e.  ( G " (
x  X.  y ) ) ) ) )
161140, 156, 1603bitr4d 285 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( (
z  e.  ( `' ( Re  o.  F
) " x )  /\  z  e.  ( `' ( Im  o.  F ) " y
) )  <->  z  e.  ( `' F " ( G
" ( x  X.  y ) ) ) ) )
162108, 161syl5bb 257 . . . . . . . . . . . 12  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( z  e.  ( ( `' ( Re  o.  F )
" x )  i^i  ( `' ( Im  o.  F ) "
y ) )  <->  z  e.  ( `' F " ( G
" ( x  X.  y ) ) ) ) )
163162eqrdv 2451 . . . . . . . . . . 11  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( `' ( Re  o.  F ) " x
)  i^i  ( `' ( Im  o.  F
) " y ) )  =  ( `' F " ( G
" ( x  X.  y ) ) ) )
164 ismbfcn 22204 . . . . . . . . . . . . . . . . . 18  |-  ( F : dom  F --> CC  ->  ( F  e. MblFn  <->  ( ( Re  o.  F )  e. MblFn  /\  ( Im  o.  F
)  e. MblFn ) )
)
165109, 164syl 16 . . . . . . . . . . . . . . . . 17  |-  ( F  e. MblFn  ->  ( F  e. MblFn  <->  ( ( Re  o.  F
)  e. MblFn  /\  (
Im  o.  F )  e. MblFn ) ) )
166165ibi 241 . . . . . . . . . . . . . . . 16  |-  ( F  e. MblFn  ->  ( ( Re  o.  F )  e. MblFn  /\  ( Im  o.  F
)  e. MblFn ) )
167166simpld 457 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( Re  o.  F )  e. MblFn )
168 ismbf 22203 . . . . . . . . . . . . . . . 16  |-  ( ( Re  o.  F ) : dom  F --> RR  ->  ( ( Re  o.  F
)  e. MblFn  <->  A. x  e.  ran  (,) ( `' ( Re  o.  F ) "
x )  e.  dom  vol ) )
169143, 168syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( ( Re  o.  F )  e. MblFn  <->  A. x  e.  ran  (,) ( `' ( Re  o.  F ) " x
)  e.  dom  vol ) )
170167, 169mpbid 210 . . . . . . . . . . . . . 14  |-  ( F  e. MblFn  ->  A. x  e.  ran  (,) ( `' ( Re  o.  F ) "
x )  e.  dom  vol )
171170adantr 463 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  A. x  e.  ran  (,) ( `' ( Re  o.  F
) " x )  e.  dom  vol )
172 imassrn 5336 . . . . . . . . . . . . . . 15  |-  ( (,) " ( QQ  X.  QQ ) )  C_  ran  (,)
1739, 172eqsstri 3519 . . . . . . . . . . . . . 14  |-  B  C_  ran  (,)
174 simprl 754 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  B )
175173, 174sseldi 3487 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  x  e.  ran  (,) )
176 rsp 2820 . . . . . . . . . . . . 13  |-  ( A. x  e.  ran  (,) ( `' ( Re  o.  F ) " x
)  e.  dom  vol  ->  ( x  e.  ran  (,) 
->  ( `' ( Re  o.  F ) "
x )  e.  dom  vol ) )
177171, 175, 176sylc 60 . . . . . . . . . . . 12  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( `' ( Re  o.  F
) " x )  e.  dom  vol )
178166simprd 461 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( Im  o.  F )  e. MblFn )
179 ismbf 22203 . . . . . . . . . . . . . . . 16  |-  ( ( Im  o.  F ) : dom  F --> RR  ->  ( ( Im  o.  F
)  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( Im  o.  F ) "
y )  e.  dom  vol ) )
180149, 179syl 16 . . . . . . . . . . . . . . 15  |-  ( F  e. MblFn  ->  ( ( Im  o.  F )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( Im  o.  F ) " y
)  e.  dom  vol ) )
181178, 180mpbid 210 . . . . . . . . . . . . . 14  |-  ( F  e. MblFn  ->  A. y  e.  ran  (,) ( `' ( Im  o.  F ) "
y )  e.  dom  vol )
182181adantr 463 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  A. y  e.  ran  (,) ( `' ( Im  o.  F
) " y )  e.  dom  vol )
183 simprr 755 . . . . . . . . . . . . . 14  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  B )
184173, 183sseldi 3487 . . . . . . . . . . . . 13  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  y  e.  ran  (,) )
185 rsp 2820 . . . . . . . . . . . . 13  |-  ( A. y  e.  ran  (,) ( `' ( Im  o.  F ) " y
)  e.  dom  vol  ->  ( y  e.  ran  (,) 
->  ( `' ( Im  o.  F ) "
y )  e.  dom  vol ) )
186182, 184, 185sylc 60 . . . . . . . . . . . 12  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( `' ( Im  o.  F
) " y )  e.  dom  vol )
187 inmbl 22118 . . . . . . . . . . . 12  |-  ( ( ( `' ( Re  o.  F ) "
x )  e.  dom  vol 
/\  ( `' ( Im  o.  F )
" y )  e. 
dom  vol )  ->  (
( `' ( Re  o.  F ) "
x )  i^i  ( `' ( Im  o.  F ) " y
) )  e.  dom  vol )
188177, 186, 187syl2anc 659 . . . . . . . . . . 11  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( ( `' ( Re  o.  F ) " x
)  i^i  ( `' ( Im  o.  F
) " y ) )  e.  dom  vol )
189163, 188eqeltrrd 2543 . . . . . . . . . 10  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( `' F " ( G "
( x  X.  y
) ) )  e. 
dom  vol )
190 imaeq2 5321 . . . . . . . . . . . 12  |-  ( w  =  ( x  X.  y )  ->  ( G " w )  =  ( G " (
x  X.  y ) ) )
191190imaeq2d 5325 . . . . . . . . . . 11  |-  ( w  =  ( x  X.  y )  ->  ( `' F " ( G
" w ) )  =  ( `' F " ( G " (
x  X.  y ) ) ) )
192191eleq1d 2523 . . . . . . . . . 10  |-  ( w  =  ( x  X.  y )  ->  (
( `' F "
( G " w
) )  e.  dom  vol  <->  ( `' F " ( G
" ( x  X.  y ) ) )  e.  dom  vol )
)
193189, 192syl5ibrcom 222 . . . . . . . . 9  |-  ( ( F  e. MblFn  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( w  =  ( x  X.  y )  ->  ( `' F " ( G
" w ) )  e.  dom  vol )
)
194193rexlimdvva 2953 . . . . . . . 8  |-  ( F  e. MblFn  ->  ( E. x  e.  B  E. y  e.  B  w  =  ( x  X.  y
)  ->  ( `' F " ( G "
w ) )  e. 
dom  vol ) )
195107, 194syl5bi 217 . . . . . . 7  |-  ( F  e. MblFn  ->  ( w  e.  K  ->  ( `' F " ( G "
w ) )  e. 
dom  vol ) )
196195ralrimiv 2866 . . . . . 6  |-  ( F  e. MblFn  ->  A. w  e.  K  ( `' F " ( G
" w ) )  e.  dom  vol )
197 ssralv 3550 . . . . . 6  |-  ( t 
C_  K  ->  ( A. w  e.  K  ( `' F " ( G
" w ) )  e.  dom  vol  ->  A. w  e.  t  ( `' F " ( G
" w ) )  e.  dom  vol )
)
198196, 197mpan9 467 . . . . 5  |-  ( ( F  e. MblFn  /\  t  C_  K )  ->  A. w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )
199198ad2ant2r 744 . . . 4  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  A. w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )
200 iunmbl2 22133 . . . 4  |-  ( ( t  ~<_  NN  /\  A. w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )  ->  U_ w  e.  t  ( `' F " ( G "
w ) )  e. 
dom  vol )
201104, 199, 200syl2anc 659 . . 3  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  U_ w  e.  t  ( `' F " ( G " w
) )  e.  dom  vol )
20245, 201eqeltrd 2542 . 2  |-  ( ( ( F  e. MblFn  /\  A  e.  J )  /\  (
t  C_  K  /\  ( `' G " A )  =  U. t ) )  ->  ( `' F " A )  e. 
dom  vol )
20327, 202exlimddv 1731 1  |-  ( ( F  e. MblFn  /\  A  e.  J )  ->  ( `' F " A )  e.  dom  vol )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398   E.wex 1617    e. wcel 1823   A.wral 2804   E.wrex 2805    i^i cin 3460    C_ wss 3461   ~Pcpw 3999   <.cop 4022   U.cuni 4235   U_ciun 4315   class class class wbr 4439   Oncon0 4867    X. cxp 4986   `'ccnv 4987   dom cdm 4988   ran crn 4989    |` cres 4990   "cima 4991    o. ccom 4992   Fun wfun 5564    Fn wfn 5565   -->wf 5566   -onto->wfo 5568   -1-1-onto->wf1o 5569   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272   omcom 6673    ~~ cen 7506    ~<_ cdom 7507   cardccrd 8307   CCcc 9479   RRcr 9480   _ici 9483    + caddc 9484    x. cmul 9486   RR*cxr 9616   NNcn 10531   QQcq 11183   (,)cioo 11532   Recre 13012   Imcim 13013   TopOpenctopn 14911   topGenctg 14927  ℂfldccnfld 18615   TopBasesctb 19565    Cn ccn 19892    tX ctx 20227   Homeochmeo 20420   volcvol 22041  MblFncmbf 22189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cc 8806  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-fal 1404  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-disj 4411  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-omul 7127  df-er 7303  df-map 7414  df-pm 7415  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-acn 8314  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-ico 11538  df-icc 11539  df-fz 11676  df-fzo 11800  df-fl 11910  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-rlim 13394  df-sum 13591  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cn 19895  df-cnp 19896  df-tx 20229  df-hmeo 20422  df-xms 20989  df-ms 20990  df-tms 20991  df-cncf 21548  df-ovol 22042  df-vol 22043  df-mbf 22194
This theorem is referenced by:  mbfimaopn  22229
  Copyright terms: Public domain W3C validator