MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem6 Structured version   Unicode version

Theorem mbfi1fseqlem6 21201
Description: Lemma for mbfi1fseq 21202. Verify that  G converges pointwise to  F, and wrap up the existence quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1  |-  ( ph  ->  F  e. MblFn )
mbfi1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
mbfi1fseq.3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
mbfi1fseq.4  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
Assertion
Ref Expression
mbfi1fseqlem6  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
Distinct variable groups:    g, m, n, x, y, F    g, G, n, x    m, J    ph, m, n, x, y
Allowed substitution hints:    ph( g)    G( y, m)    J( x, y, g, n)

Proof of Theorem mbfi1fseqlem6
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . . 3  |-  ( ph  ->  F  e. MblFn )
2 mbfi1fseq.2 . . 3  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
3 mbfi1fseq.3 . . 3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
4 mbfi1fseq.4 . . 3  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
51, 2, 3, 4mbfi1fseqlem4 21199 . 2  |-  ( ph  ->  G : NN --> dom  S.1 )
61, 2, 3, 4mbfi1fseqlem5 21200 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0p  oR  <_ 
( G `  n
)  /\  ( G `  n )  oR  <_  ( G `  ( n  +  1
) ) ) )
76ralrimiva 2802 . 2  |-  ( ph  ->  A. n  e.  NN  ( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) ) )
8 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  RR )
98recnd 9415 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  CC )
109abscld 12925 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  x )  e.  RR )
112ffvelrnda 5846 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,) +oo ) )
12 elrege0 11395 . . . . . . . 8  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
1311, 12sylib 196 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
1413simpld 459 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1510, 14readdcld 9416 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( abs `  x )  +  ( F `  x ) )  e.  RR )
16 arch 10579 . . . . 5  |-  ( ( ( abs `  x
)  +  ( F `
 x ) )  e.  RR  ->  E. k  e.  NN  ( ( abs `  x )  +  ( F `  x ) )  <  k )
1715, 16syl 16 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  E. k  e.  NN  ( ( abs `  x )  +  ( F `  x ) )  <  k )
18 eqid 2443 . . . . 5  |-  ( ZZ>= `  k )  =  (
ZZ>= `  k )
19 nnz 10671 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
2019ad2antrl 727 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  k  e.  ZZ )
21 nnuz 10899 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
22 1zzd 10680 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  1  e.  ZZ )
23 halfcn 10544 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
2423a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( 1  /  2 )  e.  CC )
25 halfre 10543 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  RR
26 0re 9389 . . . . . . . . . . . . 13  |-  0  e.  RR
27 halfgt0 10545 . . . . . . . . . . . . 13  |-  0  <  ( 1  /  2
)
2826, 25, 27ltleii 9500 . . . . . . . . . . . 12  |-  0  <_  ( 1  /  2
)
29 absid 12788 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  RR  /\  0  <_  ( 1  / 
2 ) )  -> 
( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
3025, 28, 29mp2an 672 . . . . . . . . . . 11  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
31 halflt1 10546 . . . . . . . . . . 11  |-  ( 1  /  2 )  <  1
3230, 31eqbrtri 4314 . . . . . . . . . 10  |-  ( abs `  ( 1  /  2
) )  <  1
3332a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  ( 1  /  2
) )  <  1
)
3424, 33expcnv 13329 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  ~~>  0 )
3514recnd 9415 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  CC )
36 nnex 10331 . . . . . . . . . 10  |-  NN  e.  _V
3736mptex 5951 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  e.  _V
3837a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  e.  _V )
39 nnnn0 10589 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  j  e.  NN0 )
4039adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  j  e.  NN0 )
41 oveq2 6102 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
j ) )
42 eqid 2443 . . . . . . . . . . 11  |-  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) )
43 ovex 6119 . . . . . . . . . . 11  |-  ( ( 1  /  2 ) ^ j )  e. 
_V
4441, 42, 43fvmpt 5777 . . . . . . . . . 10  |-  ( j  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j )  =  ( ( 1  / 
2 ) ^ j
) )
4540, 44syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  j
)  =  ( ( 1  /  2 ) ^ j ) )
46 expcl 11886 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ j
)  e.  CC )
4723, 40, 46sylancr 663 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( 1  /  2
) ^ j )  e.  CC )
4845, 47eqeltrd 2517 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  j
)  e.  CC )
4941oveq2d 6110 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( F `  x
)  -  ( ( 1  /  2 ) ^ n ) )  =  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) ) )
50 eqid 2443 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  =  ( n  e.  NN  |->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ n
) ) )
51 ovex 6119 . . . . . . . . . . 11  |-  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) )  e. 
_V
5249, 50, 51fvmpt 5777 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) ) )
5352adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) ) )
5445oveq2d 6110 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( F `  x
)  -  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j ) )  =  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) ) )
5553, 54eqtr4d 2478 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j ) ) )
5621, 22, 34, 35, 38, 48, 55climsubc2 13119 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( ( F `  x )  -  0 ) )
5735subid1d 9711 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  -  0 )  =  ( F `  x
) )
5856, 57breqtrd 4319 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( F `  x
) )
5958adantr 465 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ n
) ) )  ~~>  ( F `
 x ) )
6036mptex 5951 . . . . . 6  |-  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  e.  _V
6160a1i 11 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  e. 
_V )
62 simprl 755 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  k  e.  NN )
63 eluznn 10928 . . . . . . . 8  |-  ( ( k  e.  NN  /\  j  e.  ( ZZ>= `  k ) )  -> 
j  e.  NN )
6462, 63sylan 471 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  NN )
6564, 52syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  =  ( ( F `  x )  -  (
( 1  /  2
) ^ j ) ) )
6614ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  RR )
6764, 39syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  NN0 )
68 reexpcl 11885 . . . . . . . 8  |-  ( ( ( 1  /  2
)  e.  RR  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ j
)  e.  RR )
6925, 67, 68sylancr 663 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( 1  /  2 ) ^
j )  e.  RR )
7066, 69resubcld 9779 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  e.  RR )
7165, 70eqeltrd 2517 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  e.  RR )
72 fveq2 5694 . . . . . . . . 9  |-  ( n  =  j  ->  ( G `  n )  =  ( G `  j ) )
7372fveq1d 5696 . . . . . . . 8  |-  ( n  =  j  ->  (
( G `  n
) `  x )  =  ( ( G `
 j ) `  x ) )
74 eqid 2443 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )
75 fvex 5704 . . . . . . . 8  |-  ( ( G `  j ) `
 x )  e. 
_V
7673, 74, 75fvmpt 5777 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n ) `  x
) ) `  j
)  =  ( ( G `  j ) `
 x ) )
7764, 76syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  ( ( G `  j ) `  x
) )
785ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  G : NN --> dom  S.1 )
7978, 64ffvelrnd 5847 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j )  e.  dom  S.1 )
80 i1ff 21157 . . . . . . . 8  |-  ( ( G `  j )  e.  dom  S.1  ->  ( G `  j ) : RR --> RR )
8179, 80syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j ) : RR --> RR )
828ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  RR )
8381, 82ffvelrnd 5847 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( G `
 j ) `  x )  e.  RR )
8477, 83eqeltrd 2517 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  e.  RR )
8535ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  CC )
86 2nn 10482 . . . . . . . . . . . . . 14  |-  2  e.  NN
87 nnexpcl 11881 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  j  e.  NN0 )  -> 
( 2 ^ j
)  e.  NN )
8886, 67, 87sylancr 663 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  NN )
8988nnred 10340 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  RR )
9089recnd 9415 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  CC )
9188nnne0d 10369 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  =/=  0
)
9285, 90, 91divcan4d 10116 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  / 
( 2 ^ j
) )  =  ( F `  x ) )
9392eqcomd 2448 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  =  ( ( ( F `  x )  x.  (
2 ^ j ) )  /  ( 2 ^ j ) ) )
94 2cnd 10397 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  2  e.  CC )
95 2ne0 10417 . . . . . . . . . . 11  |-  2  =/=  0
9695a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  2  =/=  0
)
97 eluzelz 10873 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  k
)  ->  j  e.  ZZ )
9897adantl 466 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  ZZ )
9994, 96, 98exprecd 12019 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( 1  /  2 ) ^
j )  =  ( 1  /  ( 2 ^ j ) ) )
10093, 99oveq12d 6112 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  /  (
2 ^ j ) )  -  ( 1  /  ( 2 ^ j ) ) ) )
10166, 89remulcld 9417 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  e.  RR )
102101recnd 9415 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  e.  CC )
103 1cnd 9405 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  1  e.  CC )
104102, 103, 90, 91divsubdird 10149 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  /  (
2 ^ j ) )  -  ( 1  /  ( 2 ^ j ) ) ) )
105100, 104eqtr4d 2478 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  -  1 )  /  ( 2 ^ j ) ) )
106 fllep1 11654 . . . . . . . . . 10  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  (
( F `  x
)  x.  ( 2 ^ j ) )  <_  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  +  1 ) )
107101, 106syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  +  1 ) )
108 1red 9404 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  1  e.  RR )
109 reflcl 11649 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  e.  RR )
110101, 109syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  e.  RR )
111101, 108, 110lesubaddd 9939 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( F `
 x )  x.  ( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  +  1 ) ) )
112107, 111mpbird 232 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  - 
1 )  <_  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) ) )
113 peano2rem 9678 . . . . . . . . . 10  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  (
( ( F `  x )  x.  (
2 ^ j ) )  -  1 )  e.  RR )
114101, 113syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  - 
1 )  e.  RR )
11588nngt0d 10368 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <  (
2 ^ j ) )
116 lediv1 10197 . . . . . . . . 9  |-  ( ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  -  1 )  e.  RR  /\  ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  e.  RR  /\  (
( 2 ^ j
)  e.  RR  /\  0  <  ( 2 ^ j ) ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) ) )
117114, 110, 89, 115, 116syl112anc 1222 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) ) )
118112, 117mpbid 210 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
119105, 118eqbrtrd 4315 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
1201, 2, 3, 4mbfi1fseqlem2 21197 . . . . . . . . . 10  |-  ( j  e.  NN  ->  ( G `  j )  =  ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) ) )
12164, 120syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j )  =  ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) )
122121fveq1d 5696 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( G `
 j ) `  x )  =  ( ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) `
 x ) )
123 ovex 6119 . . . . . . . . . . 11  |-  ( j J x )  e. 
_V
124 vex 2978 . . . . . . . . . . 11  |-  j  e. 
_V
125123, 124ifex 3861 . . . . . . . . . 10  |-  if ( ( j J x )  <_  j , 
( j J x ) ,  j )  e.  _V
126 c0ex 9383 . . . . . . . . . 10  |-  0  e.  _V
127125, 126ifex 3861 . . . . . . . . 9  |-  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 )  e.  _V
128 eqid 2443 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) )
129128fvmpt2 5784 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 )  e. 
_V )  ->  (
( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) `
 x )  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) )
13082, 127, 129sylancl 662 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) ) `  x
)  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) )
13177, 122, 1303eqtrd 2479 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) )
13210ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  e.  RR )
13315ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  e.  RR )
13464nnred 10340 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  RR )
13511ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  ( 0 [,) +oo )
)
136135, 12sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
137136simprd 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <_  ( F `  x )
)
138132, 66addge01d 9930 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 0  <_ 
( F `  x
)  <->  ( abs `  x
)  <_  ( ( abs `  x )  +  ( F `  x
) ) ) )
139137, 138mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  <_  ( ( abs `  x )  +  ( F `  x
) ) )
14062adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  e.  NN )
141140nnred 10340 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  e.  RR )
142 simplrr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <  k )
143133, 141, 142ltled 9525 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <_  k )
144 eluzle 10876 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  k
)  ->  k  <_  j )
145144adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  <_  j
)
146133, 141, 134, 143, 145letrd 9531 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <_  j )
147132, 133, 134, 139, 146letrd 9531 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  <_  j )
14882, 134absled 12920 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  <_  j  <->  (
-u j  <_  x  /\  x  <_  j ) ) )
149147, 148mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( -u j  <_  x  /\  x  <_ 
j ) )
150149simpld 459 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  -u j  <_  x
)
151149simprd 463 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  <_  j
)
152134renegcld 9778 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  -u j  e.  RR )
153 elicc2 11363 . . . . . . . . . 10  |-  ( (
-u j  e.  RR  /\  j  e.  RR )  ->  ( x  e.  ( -u j [,] j )  <->  ( x  e.  RR  /\  -u j  <_  x  /\  x  <_ 
j ) ) )
154152, 134, 153syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( x  e.  ( -u j [,] j )  <->  ( x  e.  RR  /\  -u j  <_  x  /\  x  <_ 
j ) ) )
15582, 150, 151, 154mpbir3and 1171 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  (
-u j [,] j
) )
156 iftrue 3800 . . . . . . . 8  |-  ( x  e.  ( -u j [,] j )  ->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 )  =  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) )
157155, 156syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 )  =  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) )
158 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  j  /\  y  =  x )  ->  y  =  x )
159158fveq2d 5698 . . . . . . . . . . . . . . 15  |-  ( ( m  =  j  /\  y  =  x )  ->  ( F `  y
)  =  ( F `
 x ) )
160 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  j  /\  y  =  x )  ->  m  =  j )
161160oveq2d 6110 . . . . . . . . . . . . . . 15  |-  ( ( m  =  j  /\  y  =  x )  ->  ( 2 ^ m
)  =  ( 2 ^ j ) )
162159, 161oveq12d 6112 . . . . . . . . . . . . . 14  |-  ( ( m  =  j  /\  y  =  x )  ->  ( ( F `  y )  x.  (
2 ^ m ) )  =  ( ( F `  x )  x.  ( 2 ^ j ) ) )
163162fveq2d 5698 . . . . . . . . . . . . 13  |-  ( ( m  =  j  /\  y  =  x )  ->  ( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  =  ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) ) )
164163, 161oveq12d 6112 . . . . . . . . . . . 12  |-  ( ( m  =  j  /\  y  =  x )  ->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
165 ovex 6119 . . . . . . . . . . . 12  |-  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  e. 
_V
166164, 3, 165ovmpt2a 6224 . . . . . . . . . . 11  |-  ( ( j  e.  NN  /\  x  e.  RR )  ->  ( j J x )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
16764, 82, 166syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( j J x )  =  ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
168110, 88nndivred 10373 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  e.  RR )
169 flle 11652 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  <_ 
( ( F `  x )  x.  (
2 ^ j ) ) )
170101, 169syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) )
171 ledivmul2 10212 . . . . . . . . . . . . 13  |-  ( ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  e.  RR  /\  ( F `  x )  e.  RR  /\  (
( 2 ^ j
)  e.  RR  /\  0  <  ( 2 ^ j ) ) )  ->  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  <_ 
( F `  x
)  <->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) ) )
172110, 66, 89, 115, 171syl112anc 1222 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  <_ 
( F `  x
)  <->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) ) )
173170, 172mpbird 232 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  <_  ( F `  x )
)
1749ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  CC )
175174absge0d 12933 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <_  ( abs `  x ) )
17666, 132addge02d 9931 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 0  <_ 
( abs `  x
)  <->  ( F `  x )  <_  (
( abs `  x
)  +  ( F `
 x ) ) ) )
177175, 176mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  <_  (
( abs `  x
)  +  ( F `
 x ) ) )
17866, 133, 134, 177, 146letrd 9531 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  <_  j
)
179168, 66, 134, 173, 178letrd 9531 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  <_  j
)
180167, 179eqbrtrd 4315 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( j J x )  <_  j
)
181 iftrue 3800 . . . . . . . . 9  |-  ( ( j J x )  <_  j  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( j J x ) )
182180, 181syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( j J x ) )
183182, 167eqtrd 2475 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  /  (
2 ^ j ) ) )
184131, 157, 1833eqtrd 2479 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  /  (
2 ^ j ) ) )
185119, 65, 1843brtr4d 4325 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  <_ 
( ( n  e.  NN  |->  ( ( G `
 n ) `  x ) ) `  j ) )
186184, 173eqbrtrd 4315 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  <_ 
( F `  x
) )
18718, 20, 59, 61, 71, 84, 185, 186climsqz 13121 . . . 4  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) )
18817, 187rexlimddv 2848 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  ~~>  ( F `  x
) )
189188ralrimiva 2802 . 2  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `  n ) `  x
) )  ~~>  ( F `
 x ) )
19036mptex 5951 . . . 4  |-  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  ( -u m [,] m ) ,  if ( ( m J x )  <_  m ,  ( m J x ) ,  m ) ,  0 ) ) )  e. 
_V
1914, 190eqeltri 2513 . . 3  |-  G  e. 
_V
192 feq1 5545 . . . 4  |-  ( g  =  G  ->  (
g : NN --> dom  S.1  <->  G : NN --> dom  S.1 ) )
193 fveq1 5693 . . . . . . 7  |-  ( g  =  G  ->  (
g `  n )  =  ( G `  n ) )
194193breq2d 4307 . . . . . 6  |-  ( g  =  G  ->  (
0p  oR  <_  ( g `  n )  <->  0p  oR  <_  ( G `
 n ) ) )
195 fveq1 5693 . . . . . . 7  |-  ( g  =  G  ->  (
g `  ( n  +  1 ) )  =  ( G `  ( n  +  1
) ) )
196193, 195breq12d 4308 . . . . . 6  |-  ( g  =  G  ->  (
( g `  n
)  oR  <_ 
( g `  (
n  +  1 ) )  <->  ( G `  n )  oR  <_  ( G `  ( n  +  1
) ) ) )
197194, 196anbi12d 710 . . . . 5  |-  ( g  =  G  ->  (
( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  <-> 
( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) ) ) )
198197ralbidv 2738 . . . 4  |-  ( g  =  G  ->  ( A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  <->  A. n  e.  NN  ( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) ) ) )
199193fveq1d 5696 . . . . . . 7  |-  ( g  =  G  ->  (
( g `  n
) `  x )  =  ( ( G `
 n ) `  x ) )
200199mpteq2dv 4382 . . . . . 6  |-  ( g  =  G  ->  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  =  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) )
201200breq1d 4305 . . . . 5  |-  ( g  =  G  ->  (
( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
202201ralbidv 2738 . . . 4  |-  ( g  =  G  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
203192, 198, 2023anbi123d 1289 . . 3  |-  ( g  =  G  ->  (
( g : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
g `  n )  /\  ( g `  n
)  oR  <_ 
( g `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) )  <->  ( G : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
204191, 203spcev 3067 . 2  |-  ( ( G : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) )  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
2055, 7, 189, 204syl3anc 1218 1  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369   E.wex 1586    e. wcel 1756    =/= wne 2609   A.wral 2718   E.wrex 2719   _Vcvv 2975   ifcif 3794   class class class wbr 4295    e. cmpt 4353   dom cdm 4843   -->wf 5417   ` cfv 5421  (class class class)co 6094    e. cmpt2 6096    oRcofr 6322   CCcc 9283   RRcr 9284   0cc0 9285   1c1 9286    + caddc 9288    x. cmul 9290   +oocpnf 9418    < clt 9421    <_ cle 9422    - cmin 9598   -ucneg 9599    / cdiv 9996   NNcn 10325   2c2 10374   NN0cn0 10582   ZZcz 10649   ZZ>=cuz 10864   [,)cico 11305   [,]cicc 11306   |_cfl 11643   ^cexp 11868   abscabs 12726    ~~> cli 12965  MblFncmbf 21097   S.1citg1 21098   0pc0p 21150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-ofr 6324  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-map 7219  df-pm 7220  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-n0 10583  df-z 10650  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-ico 11309  df-icc 11310  df-fz 11441  df-fzo 11552  df-fl 11645  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-clim 12969  df-rlim 12970  df-sum 13167  df-rest 14364  df-topgen 14385  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-top 18506  df-bases 18508  df-topon 18509  df-cmp 18993  df-ovol 20951  df-vol 20952  df-mbf 21102  df-itg1 21103  df-0p 21151
This theorem is referenced by:  mbfi1fseq  21202
  Copyright terms: Public domain W3C validator