MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem6 Structured version   Unicode version

Theorem mbfi1fseqlem6 21862
Description: Lemma for mbfi1fseq 21863. Verify that  G converges pointwise to  F, and wrap up the existence quantifier. (Contributed by Mario Carneiro, 16-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1  |-  ( ph  ->  F  e. MblFn )
mbfi1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
mbfi1fseq.3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
mbfi1fseq.4  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
Assertion
Ref Expression
mbfi1fseqlem6  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
Distinct variable groups:    g, m, n, x, y, F    g, G, n, x    m, J    ph, m, n, x, y
Allowed substitution hints:    ph( g)    G( y, m)    J( x, y, g, n)

Proof of Theorem mbfi1fseqlem6
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1fseq.1 . . 3  |-  ( ph  ->  F  e. MblFn )
2 mbfi1fseq.2 . . 3  |-  ( ph  ->  F : RR --> ( 0 [,) +oo ) )
3 mbfi1fseq.3 . . 3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
4 mbfi1fseq.4 . . 3  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
51, 2, 3, 4mbfi1fseqlem4 21860 . 2  |-  ( ph  ->  G : NN --> dom  S.1 )
61, 2, 3, 4mbfi1fseqlem5 21861 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( 0p  oR  <_ 
( G `  n
)  /\  ( G `  n )  oR  <_  ( G `  ( n  +  1
) ) ) )
76ralrimiva 2878 . 2  |-  ( ph  ->  A. n  e.  NN  ( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) ) )
8 simpr 461 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  RR )
98recnd 9618 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  x  e.  CC )
109abscld 13226 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  x )  e.  RR )
112ffvelrnda 6019 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  ( 0 [,) +oo ) )
12 elrege0 11623 . . . . . . . 8  |-  ( ( F `  x )  e.  ( 0 [,) +oo )  <->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
1311, 12sylib 196 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x
) ) )
1413simpld 459 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  RR )
1510, 14readdcld 9619 . . . . 5  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( abs `  x )  +  ( F `  x ) )  e.  RR )
16 arch 10788 . . . . 5  |-  ( ( ( abs `  x
)  +  ( F `
 x ) )  e.  RR  ->  E. k  e.  NN  ( ( abs `  x )  +  ( F `  x ) )  <  k )
1715, 16syl 16 . . . 4  |-  ( (
ph  /\  x  e.  RR )  ->  E. k  e.  NN  ( ( abs `  x )  +  ( F `  x ) )  <  k )
18 eqid 2467 . . . . 5  |-  ( ZZ>= `  k )  =  (
ZZ>= `  k )
19 nnz 10882 . . . . . 6  |-  ( k  e.  NN  ->  k  e.  ZZ )
2019ad2antrl 727 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  k  e.  ZZ )
21 nnuz 11113 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
22 1zzd 10891 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  1  e.  ZZ )
23 halfcn 10751 . . . . . . . . . 10  |-  ( 1  /  2 )  e.  CC
2423a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( 1  /  2 )  e.  CC )
25 halfre 10750 . . . . . . . . . . . 12  |-  ( 1  /  2 )  e.  RR
26 0re 9592 . . . . . . . . . . . . 13  |-  0  e.  RR
27 halfgt0 10752 . . . . . . . . . . . . 13  |-  0  <  ( 1  /  2
)
2826, 25, 27ltleii 9703 . . . . . . . . . . . 12  |-  0  <_  ( 1  /  2
)
29 absid 13088 . . . . . . . . . . . 12  |-  ( ( ( 1  /  2
)  e.  RR  /\  0  <_  ( 1  / 
2 ) )  -> 
( abs `  (
1  /  2 ) )  =  ( 1  /  2 ) )
3025, 28, 29mp2an 672 . . . . . . . . . . 11  |-  ( abs `  ( 1  /  2
) )  =  ( 1  /  2 )
31 halflt1 10753 . . . . . . . . . . 11  |-  ( 1  /  2 )  <  1
3230, 31eqbrtri 4466 . . . . . . . . . 10  |-  ( abs `  ( 1  /  2
) )  <  1
3332a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  RR )  ->  ( abs `  ( 1  /  2
) )  <  1
)
3424, 33expcnv 13634 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  ~~>  0 )
3514recnd 9618 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( F `
 x )  e.  CC )
36 nnex 10538 . . . . . . . . . 10  |-  NN  e.  _V
3736mptex 6129 . . . . . . . . 9  |-  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  e.  _V
3837a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  e.  _V )
39 nnnn0 10798 . . . . . . . . . . 11  |-  ( j  e.  NN  ->  j  e.  NN0 )
4039adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  j  e.  NN0 )
41 oveq2 6290 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( 1  /  2
) ^ n )  =  ( ( 1  /  2 ) ^
j ) )
42 eqid 2467 . . . . . . . . . . 11  |-  ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) )  =  ( n  e. 
NN0  |->  ( ( 1  /  2 ) ^
n ) )
43 ovex 6307 . . . . . . . . . . 11  |-  ( ( 1  /  2 ) ^ j )  e. 
_V
4441, 42, 43fvmpt 5948 . . . . . . . . . 10  |-  ( j  e.  NN0  ->  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j )  =  ( ( 1  / 
2 ) ^ j
) )
4540, 44syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  j
)  =  ( ( 1  /  2 ) ^ j ) )
46 expcl 12148 . . . . . . . . . 10  |-  ( ( ( 1  /  2
)  e.  CC  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ j
)  e.  CC )
4723, 40, 46sylancr 663 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( 1  /  2
) ^ j )  e.  CC )
4845, 47eqeltrd 2555 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN0  |->  ( ( 1  / 
2 ) ^ n
) ) `  j
)  e.  CC )
4941oveq2d 6298 . . . . . . . . . . 11  |-  ( n  =  j  ->  (
( F `  x
)  -  ( ( 1  /  2 ) ^ n ) )  =  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) ) )
50 eqid 2467 . . . . . . . . . . 11  |-  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  =  ( n  e.  NN  |->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ n
) ) )
51 ovex 6307 . . . . . . . . . . 11  |-  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) )  e. 
_V
5249, 50, 51fvmpt 5948 . . . . . . . . . 10  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) ) )
5352adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( 1  /  2 ) ^
j ) ) )
5445oveq2d 6298 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( F `  x
)  -  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j ) )  =  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) ) )
5553, 54eqtr4d 2511 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  j  e.  NN )  ->  (
( n  e.  NN  |->  ( ( F `  x )  -  (
( 1  /  2
) ^ n ) ) ) `  j
)  =  ( ( F `  x )  -  ( ( n  e.  NN0  |->  ( ( 1  /  2 ) ^ n ) ) `
 j ) ) )
5621, 22, 34, 35, 38, 48, 55climsubc2 13420 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( ( F `  x )  -  0 ) )
5735subid1d 9915 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR )  ->  ( ( F `  x )  -  0 )  =  ( F `  x
) )
5856, 57breqtrd 4471 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) )  ~~>  ( F `  x
) )
5958adantr 465 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ n
) ) )  ~~>  ( F `
 x ) )
6036mptex 6129 . . . . . 6  |-  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  e.  _V
6160a1i 11 . . . . 5  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  e. 
_V )
62 simprl 755 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  k  e.  NN )
63 eluznn 11148 . . . . . . . 8  |-  ( ( k  e.  NN  /\  j  e.  ( ZZ>= `  k ) )  -> 
j  e.  NN )
6462, 63sylan 471 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  NN )
6564, 52syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  =  ( ( F `  x )  -  (
( 1  /  2
) ^ j ) ) )
6614ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  RR )
6764, 39syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  NN0 )
68 reexpcl 12147 . . . . . . . 8  |-  ( ( ( 1  /  2
)  e.  RR  /\  j  e.  NN0 )  -> 
( ( 1  / 
2 ) ^ j
)  e.  RR )
6925, 67, 68sylancr 663 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( 1  /  2 ) ^
j )  e.  RR )
7066, 69resubcld 9983 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  e.  RR )
7165, 70eqeltrd 2555 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  e.  RR )
72 fveq2 5864 . . . . . . . . 9  |-  ( n  =  j  ->  ( G `  n )  =  ( G `  j ) )
7372fveq1d 5866 . . . . . . . 8  |-  ( n  =  j  ->  (
( G `  n
) `  x )  =  ( ( G `
 j ) `  x ) )
74 eqid 2467 . . . . . . . 8  |-  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )
75 fvex 5874 . . . . . . . 8  |-  ( ( G `  j ) `
 x )  e. 
_V
7673, 74, 75fvmpt 5948 . . . . . . 7  |-  ( j  e.  NN  ->  (
( n  e.  NN  |->  ( ( G `  n ) `  x
) ) `  j
)  =  ( ( G `  j ) `
 x ) )
7764, 76syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  ( ( G `  j ) `  x
) )
785ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  G : NN --> dom  S.1 )
7978, 64ffvelrnd 6020 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j )  e.  dom  S.1 )
80 i1ff 21818 . . . . . . . 8  |-  ( ( G `  j )  e.  dom  S.1  ->  ( G `  j ) : RR --> RR )
8179, 80syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j ) : RR --> RR )
828ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  RR )
8381, 82ffvelrnd 6020 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( G `
 j ) `  x )  e.  RR )
8477, 83eqeltrd 2555 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  e.  RR )
8535ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  CC )
86 2nn 10689 . . . . . . . . . . . . . 14  |-  2  e.  NN
87 nnexpcl 12143 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  j  e.  NN0 )  -> 
( 2 ^ j
)  e.  NN )
8886, 67, 87sylancr 663 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  NN )
8988nnred 10547 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  RR )
9089recnd 9618 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  e.  CC )
9188nnne0d 10576 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 2 ^ j )  =/=  0
)
9285, 90, 91divcan4d 10322 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  / 
( 2 ^ j
) )  =  ( F `  x ) )
9392eqcomd 2475 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  =  ( ( ( F `  x )  x.  (
2 ^ j ) )  /  ( 2 ^ j ) ) )
94 2cnd 10604 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  2  e.  CC )
95 2ne0 10624 . . . . . . . . . . 11  |-  2  =/=  0
9695a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  2  =/=  0
)
97 eluzelz 11087 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  k
)  ->  j  e.  ZZ )
9897adantl 466 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  ZZ )
9994, 96, 98exprecd 12282 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( 1  /  2 ) ^
j )  =  ( 1  /  ( 2 ^ j ) ) )
10093, 99oveq12d 6300 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  /  (
2 ^ j ) )  -  ( 1  /  ( 2 ^ j ) ) ) )
10166, 89remulcld 9620 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  e.  RR )
102101recnd 9618 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  e.  CC )
103 1cnd 9608 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  1  e.  CC )
104102, 103, 90, 91divsubdird 10355 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  /  (
2 ^ j ) )  -  ( 1  /  ( 2 ^ j ) ) ) )
105100, 104eqtr4d 2511 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  =  ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  -  1 )  /  ( 2 ^ j ) ) )
106 fllep1 11902 . . . . . . . . . 10  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  (
( F `  x
)  x.  ( 2 ^ j ) )  <_  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  +  1 ) )
107101, 106syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  x.  ( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  +  1 ) )
108 1red 9607 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  1  e.  RR )
109 reflcl 11897 . . . . . . . . . . 11  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  e.  RR )
110101, 109syl 16 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  e.  RR )
111101, 108, 110lesubaddd 10145 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( F `
 x )  x.  ( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  +  1 ) ) )
112107, 111mpbird 232 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  - 
1 )  <_  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) ) )
113 peano2rem 9882 . . . . . . . . . 10  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  (
( ( F `  x )  x.  (
2 ^ j ) )  -  1 )  e.  RR )
114101, 113syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( F `  x )  x.  ( 2 ^ j ) )  - 
1 )  e.  RR )
11588nngt0d 10575 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <  (
2 ^ j ) )
116 lediv1 10403 . . . . . . . . 9  |-  ( ( ( ( ( F `
 x )  x.  ( 2 ^ j
) )  -  1 )  e.  RR  /\  ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  e.  RR  /\  (
( 2 ^ j
)  e.  RR  /\  0  <  ( 2 ^ j ) ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) ) )
117114, 110, 89, 115, 116syl112anc 1232 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  <_ 
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  <->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) ) )
118112, 117mpbid 210 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( ( F `  x
)  x.  ( 2 ^ j ) )  -  1 )  / 
( 2 ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
119105, 118eqbrtrd 4467 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  -  ( ( 1  / 
2 ) ^ j
) )  <_  (
( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
1201, 2, 3, 4mbfi1fseqlem2 21858 . . . . . . . . . 10  |-  ( j  e.  NN  ->  ( G `  j )  =  ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) ) )
12164, 120syl 16 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( G `  j )  =  ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) )
122121fveq1d 5866 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( G `
 j ) `  x )  =  ( ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) `
 x ) )
123 ovex 6307 . . . . . . . . . . 11  |-  ( j J x )  e. 
_V
124 vex 3116 . . . . . . . . . . 11  |-  j  e. 
_V
125123, 124ifex 4008 . . . . . . . . . 10  |-  if ( ( j J x )  <_  j , 
( j J x ) ,  j )  e.  _V
126 c0ex 9586 . . . . . . . . . 10  |-  0  e.  _V
127125, 126ifex 4008 . . . . . . . . 9  |-  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 )  e.  _V
128 eqid 2467 . . . . . . . . . 10  |-  ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) )
129128fvmpt2 5955 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 )  e. 
_V )  ->  (
( x  e.  RR  |->  if ( x  e.  (
-u j [,] j
) ,  if ( ( j J x )  <_  j , 
( j J x ) ,  j ) ,  0 ) ) `
 x )  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) )
13082, 127, 129sylancl 662 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( x  e.  RR  |->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) ) `  x
)  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_ 
j ,  ( j J x ) ,  j ) ,  0 ) )
13177, 122, 1303eqtrd 2512 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 ) )
13210ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  e.  RR )
13315ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  e.  RR )
13464nnred 10547 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  j  e.  RR )
13511ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  e.  ( 0 [,) +oo )
)
136135, 12sylib 196 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( F `
 x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
137136simprd 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <_  ( F `  x )
)
138132, 66addge01d 10136 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 0  <_ 
( F `  x
)  <->  ( abs `  x
)  <_  ( ( abs `  x )  +  ( F `  x
) ) ) )
139137, 138mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  <_  ( ( abs `  x )  +  ( F `  x
) ) )
14062adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  e.  NN )
141140nnred 10547 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  e.  RR )
142 simplrr 760 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <  k )
143133, 141, 142ltled 9728 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <_  k )
144 eluzle 11090 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  k
)  ->  k  <_  j )
145144adantl 466 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  k  <_  j
)
146133, 141, 134, 143, 145letrd 9734 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  +  ( F `  x ) )  <_  j )
147132, 133, 134, 139, 146letrd 9734 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( abs `  x
)  <_  j )
14882, 134absled 13221 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( abs `  x )  <_  j  <->  (
-u j  <_  x  /\  x  <_  j ) ) )
149147, 148mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( -u j  <_  x  /\  x  <_ 
j ) )
150149simpld 459 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  -u j  <_  x
)
151149simprd 463 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  <_  j
)
152134renegcld 9982 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  -u j  e.  RR )
153 elicc2 11585 . . . . . . . . . 10  |-  ( (
-u j  e.  RR  /\  j  e.  RR )  ->  ( x  e.  ( -u j [,] j )  <->  ( x  e.  RR  /\  -u j  <_  x  /\  x  <_ 
j ) ) )
154152, 134, 153syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( x  e.  ( -u j [,] j )  <->  ( x  e.  RR  /\  -u j  <_  x  /\  x  <_ 
j ) ) )
15582, 150, 151, 154mpbir3and 1179 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  (
-u j [,] j
) )
156 iftrue 3945 . . . . . . . 8  |-  ( x  e.  ( -u j [,] j )  ->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 )  =  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) )
157155, 156syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( x  e.  ( -u j [,] j ) ,  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) ,  0 )  =  if ( ( j J x )  <_  j ,  ( j J x ) ,  j ) )
158 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  j  /\  y  =  x )  ->  y  =  x )
159158fveq2d 5868 . . . . . . . . . . . . . . 15  |-  ( ( m  =  j  /\  y  =  x )  ->  ( F `  y
)  =  ( F `
 x ) )
160 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  j  /\  y  =  x )  ->  m  =  j )
161160oveq2d 6298 . . . . . . . . . . . . . . 15  |-  ( ( m  =  j  /\  y  =  x )  ->  ( 2 ^ m
)  =  ( 2 ^ j ) )
162159, 161oveq12d 6300 . . . . . . . . . . . . . 14  |-  ( ( m  =  j  /\  y  =  x )  ->  ( ( F `  y )  x.  (
2 ^ m ) )  =  ( ( F `  x )  x.  ( 2 ^ j ) ) )
163162fveq2d 5868 . . . . . . . . . . . . 13  |-  ( ( m  =  j  /\  y  =  x )  ->  ( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  =  ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) ) )
164163, 161oveq12d 6300 . . . . . . . . . . . 12  |-  ( ( m  =  j  /\  y  =  x )  ->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
165 ovex 6307 . . . . . . . . . . . 12  |-  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  e. 
_V
166164, 3, 165ovmpt2a 6415 . . . . . . . . . . 11  |-  ( ( j  e.  NN  /\  x  e.  RR )  ->  ( j J x )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
16764, 82, 166syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( j J x )  =  ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) ) )
168110, 88nndivred 10580 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  e.  RR )
169 flle 11900 . . . . . . . . . . . . 13  |-  ( ( ( F `  x
)  x.  ( 2 ^ j ) )  e.  RR  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  <_ 
( ( F `  x )  x.  (
2 ^ j ) ) )
170101, 169syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) )
171 ledivmul2 10418 . . . . . . . . . . . . 13  |-  ( ( ( |_ `  (
( F `  x
)  x.  ( 2 ^ j ) ) )  e.  RR  /\  ( F `  x )  e.  RR  /\  (
( 2 ^ j
)  e.  RR  /\  0  <  ( 2 ^ j ) ) )  ->  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  <_ 
( F `  x
)  <->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) ) )
172110, 66, 89, 115, 171syl112anc 1232 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ j ) ) )  /  ( 2 ^ j ) )  <_ 
( F `  x
)  <->  ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  <_  (
( F `  x
)  x.  ( 2 ^ j ) ) ) )
173170, 172mpbird 232 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  <_  ( F `  x )
)
1749ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  x  e.  CC )
175174absge0d 13234 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  0  <_  ( abs `  x ) )
17666, 132addge02d 10137 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( 0  <_ 
( abs `  x
)  <->  ( F `  x )  <_  (
( abs `  x
)  +  ( F `
 x ) ) ) )
177175, 176mpbid 210 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  <_  (
( abs `  x
)  +  ( F `
 x ) ) )
17866, 133, 134, 177, 146letrd 9734 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( F `  x )  <_  j
)
179168, 66, 134, 173, 178letrd 9734 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( |_
`  ( ( F `
 x )  x.  ( 2 ^ j
) ) )  / 
( 2 ^ j
) )  <_  j
)
180167, 179eqbrtrd 4467 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( j J x )  <_  j
)
181 iftrue 3945 . . . . . . . . 9  |-  ( ( j J x )  <_  j  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( j J x ) )
182180, 181syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( j J x ) )
183182, 167eqtrd 2508 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  if ( ( j J x )  <_  j ,  ( j J x ) ,  j )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  /  (
2 ^ j ) ) )
184131, 157, 1833eqtrd 2512 . . . . . 6  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ j ) ) )  /  (
2 ^ j ) ) )
185119, 65, 1843brtr4d 4477 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( F `  x )  -  ( ( 1  /  2 ) ^
n ) ) ) `
 j )  <_ 
( ( n  e.  NN  |->  ( ( G `
 n ) `  x ) ) `  j ) )
186184, 173eqbrtrd 4467 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  RR )  /\  ( k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  /\  j  e.  (
ZZ>= `  k ) )  ->  ( ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) `
 j )  <_ 
( F `  x
) )
18718, 20, 59, 61, 71, 84, 185, 186climsqz 13422 . . . 4  |-  ( ( ( ph  /\  x  e.  RR )  /\  (
k  e.  NN  /\  ( ( abs `  x
)  +  ( F `
 x ) )  <  k ) )  ->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) )
18817, 187rexlimddv 2959 . . 3  |-  ( (
ph  /\  x  e.  RR )  ->  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) )  ~~>  ( F `  x
) )
189188ralrimiva 2878 . 2  |-  ( ph  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `  n ) `  x
) )  ~~>  ( F `
 x ) )
19036mptex 6129 . . . 4  |-  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  ( -u m [,] m ) ,  if ( ( m J x )  <_  m ,  ( m J x ) ,  m ) ,  0 ) ) )  e. 
_V
1914, 190eqeltri 2551 . . 3  |-  G  e. 
_V
192 feq1 5711 . . . 4  |-  ( g  =  G  ->  (
g : NN --> dom  S.1  <->  G : NN --> dom  S.1 ) )
193 fveq1 5863 . . . . . . 7  |-  ( g  =  G  ->  (
g `  n )  =  ( G `  n ) )
194193breq2d 4459 . . . . . 6  |-  ( g  =  G  ->  (
0p  oR  <_  ( g `  n )  <->  0p  oR  <_  ( G `
 n ) ) )
195 fveq1 5863 . . . . . . 7  |-  ( g  =  G  ->  (
g `  ( n  +  1 ) )  =  ( G `  ( n  +  1
) ) )
196193, 195breq12d 4460 . . . . . 6  |-  ( g  =  G  ->  (
( g `  n
)  oR  <_ 
( g `  (
n  +  1 ) )  <->  ( G `  n )  oR  <_  ( G `  ( n  +  1
) ) ) )
197194, 196anbi12d 710 . . . . 5  |-  ( g  =  G  ->  (
( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  <-> 
( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) ) ) )
198197ralbidv 2903 . . . 4  |-  ( g  =  G  ->  ( A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  <->  A. n  e.  NN  ( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) ) ) )
199193fveq1d 5866 . . . . . . 7  |-  ( g  =  G  ->  (
( g `  n
) `  x )  =  ( ( G `
 n ) `  x ) )
200199mpteq2dv 4534 . . . . . 6  |-  ( g  =  G  ->  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  =  ( n  e.  NN  |->  ( ( G `  n ) `
 x ) ) )
201200breq1d 4457 . . . . 5  |-  ( g  =  G  ->  (
( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
202201ralbidv 2903 . . . 4  |-  ( g  =  G  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
203192, 198, 2023anbi123d 1299 . . 3  |-  ( g  =  G  ->  (
( g : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
g `  n )  /\  ( g `  n
)  oR  <_ 
( g `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) )  <->  ( G : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
204191, 203spcev 3205 . 2  |-  ( ( G : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( G `  n )  /\  ( G `  n )  oR  <_  ( G `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( G `
 n ) `  x ) )  ~~>  ( F `
 x ) )  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
2055, 7, 189, 204syl3anc 1228 1  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( g `  n )  /\  (
g `  n )  oR  <_  ( g `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815   _Vcvv 3113   ifcif 3939   class class class wbr 4447    |-> cmpt 4505   dom cdm 4999   -->wf 5582   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284    oRcofr 6521   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493   +oocpnf 9621    < clt 9624    <_ cle 9625    - cmin 9801   -ucneg 9802    / cdiv 10202   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   [,)cico 11527   [,]cicc 11528   |_cfl 11891   ^cexp 12130   abscabs 13026    ~~> cli 13266  MblFncmbf 21758   S.1citg1 21759   0pc0p 21811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-ofr 6523  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fi 7867  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-xneg 11314  df-xadd 11315  df-xmul 11316  df-ioo 11529  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-rlim 13271  df-sum 13468  df-rest 14674  df-topgen 14695  df-psmet 18182  df-xmet 18183  df-met 18184  df-bl 18185  df-mopn 18186  df-top 19166  df-bases 19168  df-topon 19169  df-cmp 19653  df-ovol 21611  df-vol 21612  df-mbf 21763  df-itg1 21764  df-0p 21812
This theorem is referenced by:  mbfi1fseq  21863
  Copyright terms: Public domain W3C validator