MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1fseqlem3 Unicode version

Theorem mbfi1fseqlem3 19562
Description: Lemma for mbfi1fseq 19566. (Contributed by Mario Carneiro, 16-Aug-2014.)
Hypotheses
Ref Expression
mbfi1fseq.1  |-  ( ph  ->  F  e. MblFn )
mbfi1fseq.2  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
mbfi1fseq.3  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
mbfi1fseq.4  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
Assertion
Ref Expression
mbfi1fseqlem3  |-  ( (
ph  /\  A  e.  NN )  ->  ( G `
 A ) : RR --> ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )
Distinct variable groups:    x, m, y, F    x, G    m, J    ph, m, x, y    A, m, x, y
Allowed substitution hints:    G( y, m)    J( x, y)

Proof of Theorem mbfi1fseqlem3
StepHypRef Expression
1 0re 9047 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  RR
2 pnfxr 10669 . . . . . . . . . . . . . . . . . . . 20  |-  +oo  e.  RR*
3 icossre 10947 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR  /\  +oo 
e.  RR* )  ->  (
0 [,)  +oo )  C_  RR )
41, 2, 3mp2an 654 . . . . . . . . . . . . . . . . . . 19  |-  ( 0 [,)  +oo )  C_  RR
5 mbfi1fseq.2 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  F : RR --> ( 0 [,)  +oo ) )
6 simpr 448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  e.  NN  /\  y  e.  RR )  ->  y  e.  RR )
7 ffvelrn 5827 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : RR --> ( 0 [,)  +oo )  /\  y  e.  RR )  ->  ( F `  y )  e.  ( 0 [,)  +oo ) )
85, 6, 7syl2an 464 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( F `  y
)  e.  ( 0 [,)  +oo ) )
94, 8sseldi 3306 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( F `  y
)  e.  RR )
10 2nn 10089 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  NN
11 nnnn0 10184 . . . . . . . . . . . . . . . . . . . . 21  |-  ( m  e.  NN  ->  m  e.  NN0 )
12 nnexpcl 11349 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  NN  /\  m  e.  NN0 )  -> 
( 2 ^ m
)  e.  NN )
1310, 11, 12sylancr 645 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  NN  ->  (
2 ^ m )  e.  NN )
1413ad2antrl 709 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( 2 ^ m
)  e.  NN )
1514nnred 9971 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( 2 ^ m
)  e.  RR )
169, 15remulcld 9072 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( ( F `  y )  x.  (
2 ^ m ) )  e.  RR )
17 reflcl 11160 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  y
)  x.  ( 2 ^ m ) )  e.  RR  ->  ( |_ `  ( ( F `
 y )  x.  ( 2 ^ m
) ) )  e.  RR )
1816, 17syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  e.  RR )
1918, 14nndivred 10004 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( m  e.  NN  /\  y  e.  RR ) )  -> 
( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  e.  RR )
2019ralrimivva 2758 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. m  e.  NN  A. y  e.  RR  (
( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  /  ( 2 ^ m ) )  e.  RR )
21 mbfi1fseq.3 . . . . . . . . . . . . . . 15  |-  J  =  ( m  e.  NN ,  y  e.  RR  |->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) ) )
2221fmpt2 6377 . . . . . . . . . . . . . 14  |-  ( A. m  e.  NN  A. y  e.  RR  ( ( |_
`  ( ( F `
 y )  x.  ( 2 ^ m
) ) )  / 
( 2 ^ m
) )  e.  RR  <->  J : ( NN  X.  RR ) --> RR )
2320, 22sylib 189 . . . . . . . . . . . . 13  |-  ( ph  ->  J : ( NN 
X.  RR ) --> RR )
24 fovrn 6175 . . . . . . . . . . . . 13  |-  ( ( J : ( NN 
X.  RR ) --> RR 
/\  A  e.  NN  /\  x  e.  RR )  ->  ( A J x )  e.  RR )
2523, 24syl3an1 1217 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  e.  NN  /\  x  e.  RR )  ->  ( A J x )  e.  RR )
26253expa 1153 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A J x )  e.  RR )
27 nnre 9963 . . . . . . . . . . . 12  |-  ( A  e.  NN  ->  A  e.  RR )
2827ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  A  e.  RR )
29 nnnn0 10184 . . . . . . . . . . . . . 14  |-  ( A  e.  NN  ->  A  e.  NN0 )
30 nnexpcl 11349 . . . . . . . . . . . . . 14  |-  ( ( 2  e.  NN  /\  A  e.  NN0 )  -> 
( 2 ^ A
)  e.  NN )
3110, 29, 30sylancr 645 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  (
2 ^ A )  e.  NN )
3231ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  e.  NN )
33 nnre 9963 . . . . . . . . . . . . 13  |-  ( ( 2 ^ A )  e.  NN  ->  (
2 ^ A )  e.  RR )
34 nngt0 9985 . . . . . . . . . . . . 13  |-  ( ( 2 ^ A )  e.  NN  ->  0  <  ( 2 ^ A
) )
3533, 34jca 519 . . . . . . . . . . . 12  |-  ( ( 2 ^ A )  e.  NN  ->  (
( 2 ^ A
)  e.  RR  /\  0  <  ( 2 ^ A ) ) )
3632, 35syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( 2 ^ A
)  e.  RR  /\  0  <  ( 2 ^ A ) ) )
37 lemul1 9818 . . . . . . . . . . 11  |-  ( ( ( A J x )  e.  RR  /\  A  e.  RR  /\  (
( 2 ^ A
)  e.  RR  /\  0  <  ( 2 ^ A ) ) )  ->  ( ( A J x )  <_  A 
<->  ( ( A J x )  x.  (
2 ^ A ) )  <_  ( A  x.  ( 2 ^ A
) ) ) )
3826, 28, 36, 37syl3anc 1184 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( A J x )  <_  A  <->  ( ( A J x )  x.  ( 2 ^ A
) )  <_  ( A  x.  ( 2 ^ A ) ) ) )
3938biimpa 471 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( ( A J x )  x.  ( 2 ^ A
) )  <_  ( A  x.  ( 2 ^ A ) ) )
40 simplr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  A  e.  NN )
4140adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  A  e.  NN )
42 simplr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  x  e.  RR )
43 simpr 448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  =  A  /\  y  =  x )  ->  y  =  x )
4443fveq2d 5691 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  =  A  /\  y  =  x )  ->  ( F `  y
)  =  ( F `
 x ) )
45 simpl 444 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( m  =  A  /\  y  =  x )  ->  m  =  A )
4645oveq2d 6056 . . . . . . . . . . . . . . . . . . 19  |-  ( ( m  =  A  /\  y  =  x )  ->  ( 2 ^ m
)  =  ( 2 ^ A ) )
4744, 46oveq12d 6058 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  =  A  /\  y  =  x )  ->  ( ( F `  y )  x.  (
2 ^ m ) )  =  ( ( F `  x )  x.  ( 2 ^ A ) ) )
4847fveq2d 5691 . . . . . . . . . . . . . . . . 17  |-  ( ( m  =  A  /\  y  =  x )  ->  ( |_ `  (
( F `  y
)  x.  ( 2 ^ m ) ) )  =  ( |_
`  ( ( F `
 x )  x.  ( 2 ^ A
) ) ) )
4948, 46oveq12d 6058 . . . . . . . . . . . . . . . 16  |-  ( ( m  =  A  /\  y  =  x )  ->  ( ( |_ `  ( ( F `  y )  x.  (
2 ^ m ) ) )  /  (
2 ^ m ) )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) ) )
50 ovex 6065 . . . . . . . . . . . . . . . 16  |-  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) )  e. 
_V
5149, 21, 50ovmpt2a 6163 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  x  e.  RR )  ->  ( A J x )  =  ( ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) ) )
5241, 42, 51syl2anc 643 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( A J x )  =  ( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  /  (
2 ^ A ) ) )
5352oveq1d 6055 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( ( A J x )  x.  ( 2 ^ A
) )  =  ( ( ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  /  (
2 ^ A ) )  x.  ( 2 ^ A ) ) )
545adantr 452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  A  e.  NN )  ->  F : RR
--> ( 0 [,)  +oo ) )
5554ffvelrnda 5829 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( F `  x )  e.  ( 0 [,)  +oo ) )
56 elrege0 10963 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F `  x )  e.  ( 0 [,) 
+oo )  <->  ( ( F `  x )  e.  RR  /\  0  <_ 
( F `  x
) ) )
5755, 56sylib 189 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( F `  x
)  e.  RR  /\  0  <_  ( F `  x ) ) )
5857simpld 446 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
5932nnred 9971 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  e.  RR )
6058, 59remulcld 9072 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( F `  x
)  x.  ( 2 ^ A ) )  e.  RR )
6132nnnn0d 10230 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  e.  NN0 )
6261nn0ge0d 10233 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( 2 ^ A
) )
63 mulge0 9501 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( F `  x )  e.  RR  /\  0  <_  ( F `  x ) )  /\  ( ( 2 ^ A )  e.  RR  /\  0  <_  ( 2 ^ A ) ) )  ->  0  <_  ( ( F `  x
)  x.  ( 2 ^ A ) ) )
6457, 59, 62, 63syl12anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  <_  ( ( F `  x )  x.  (
2 ^ A ) ) )
65 flge0nn0 11180 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F `  x )  x.  (
2 ^ A ) )  e.  RR  /\  0  <_  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  -> 
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  e.  NN0 )
6660, 64, 65syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( |_ `  ( ( F `
 x )  x.  ( 2 ^ A
) ) )  e. 
NN0 )
6766adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  e.  NN0 )
6867nn0cnd 10232 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( |_ `  ( ( F `  x )  x.  (
2 ^ A ) ) )  e.  CC )
6932adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( 2 ^ A )  e.  NN )
7069nncnd 9972 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( 2 ^ A )  e.  CC )
7169nnne0d 10000 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( 2 ^ A )  =/=  0 )
7268, 70, 71divcan1d 9747 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( (
( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) )  /  ( 2 ^ A ) )  x.  ( 2 ^ A ) )  =  ( |_ `  (
( F `  x
)  x.  ( 2 ^ A ) ) ) )
7353, 72eqtrd 2436 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( ( A J x )  x.  ( 2 ^ A
) )  =  ( |_ `  ( ( F `  x )  x.  ( 2 ^ A ) ) ) )
7473, 67eqeltrd 2478 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( ( A J x )  x.  ( 2 ^ A
) )  e.  NN0 )
75 nn0uz 10476 . . . . . . . . . . 11  |-  NN0  =  ( ZZ>= `  0 )
7674, 75syl6eleq 2494 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( ( A J x )  x.  ( 2 ^ A
) )  e.  (
ZZ>= `  0 ) )
77 nnmulcl 9979 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  ( 2 ^ A
)  e.  NN )  ->  ( A  x.  ( 2 ^ A
) )  e.  NN )
7831, 77mpdan 650 . . . . . . . . . . . . 13  |-  ( A  e.  NN  ->  ( A  x.  ( 2 ^ A ) )  e.  NN )
7978ad2antlr 708 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A  x.  ( 2 ^ A ) )  e.  NN )
8079adantr 452 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( A  x.  ( 2 ^ A
) )  e.  NN )
8180nnzd 10330 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( A  x.  ( 2 ^ A
) )  e.  ZZ )
82 elfz5 11007 . . . . . . . . . 10  |-  ( ( ( ( A J x )  x.  (
2 ^ A ) )  e.  ( ZZ>= ` 
0 )  /\  ( A  x.  ( 2 ^ A ) )  e.  ZZ )  -> 
( ( ( A J x )  x.  ( 2 ^ A
) )  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  <-> 
( ( A J x )  x.  (
2 ^ A ) )  <_  ( A  x.  ( 2 ^ A
) ) ) )
8376, 81, 82syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( (
( A J x )  x.  ( 2 ^ A ) )  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  <->  ( ( A J x )  x.  ( 2 ^ A
) )  <_  ( A  x.  ( 2 ^ A ) ) ) )
8439, 83mpbird 224 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( ( A J x )  x.  ( 2 ^ A
) )  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) )
85 oveq1 6047 . . . . . . . . 9  |-  ( m  =  ( ( A J x )  x.  ( 2 ^ A
) )  ->  (
m  /  ( 2 ^ A ) )  =  ( ( ( A J x )  x.  ( 2 ^ A ) )  / 
( 2 ^ A
) ) )
86 eqid 2404 . . . . . . . . 9  |-  ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  |->  ( m  /  ( 2 ^ A ) ) )  =  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) )
87 ovex 6065 . . . . . . . . 9  |-  ( ( ( A J x )  x.  ( 2 ^ A ) )  /  ( 2 ^ A ) )  e. 
_V
8885, 86, 87fvmpt 5765 . . . . . . . 8  |-  ( ( ( A J x )  x.  ( 2 ^ A ) )  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  ->  (
( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) `  (
( A J x )  x.  ( 2 ^ A ) ) )  =  ( ( ( A J x )  x.  ( 2 ^ A ) )  /  ( 2 ^ A ) ) )
8984, 88syl 16 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( (
m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) ) `  ( ( A J x )  x.  ( 2 ^ A ) ) )  =  ( ( ( A J x )  x.  ( 2 ^ A ) )  / 
( 2 ^ A
) ) )
9026adantr 452 . . . . . . . . 9  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( A J x )  e.  RR )
9190recnd 9070 . . . . . . . 8  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( A J x )  e.  CC )
9291, 70, 71divcan4d 9752 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( (
( A J x )  x.  ( 2 ^ A ) )  /  ( 2 ^ A ) )  =  ( A J x ) )
9389, 92eqtrd 2436 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( (
m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) ) `  ( ( A J x )  x.  ( 2 ^ A ) ) )  =  ( A J x ) )
94 elfznn0 11039 . . . . . . . . . . . . 13  |-  ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  ->  m  e.  NN0 )
9594nn0red 10231 . . . . . . . . . . . 12  |-  ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  ->  m  e.  RR )
9631adantl 453 . . . . . . . . . . . 12  |-  ( (
ph  /\  A  e.  NN )  ->  ( 2 ^ A )  e.  NN )
97 nndivre 9991 . . . . . . . . . . . 12  |-  ( ( m  e.  RR  /\  ( 2 ^ A
)  e.  NN )  ->  ( m  / 
( 2 ^ A
) )  e.  RR )
9895, 96, 97syl2anr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) )  ->  (
m  /  ( 2 ^ A ) )  e.  RR )
9998, 86fmptd 5852 . . . . . . . . . 10  |-  ( (
ph  /\  A  e.  NN )  ->  ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  |->  ( m  /  ( 2 ^ A ) ) ) : ( 0 ... ( A  x.  (
2 ^ A ) ) ) --> RR )
100 ffn 5550 . . . . . . . . . 10  |-  ( ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) ) : ( 0 ... ( A  x.  ( 2 ^ A
) ) ) --> RR 
->  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) )  Fn  (
0 ... ( A  x.  ( 2 ^ A
) ) ) )
10199, 100syl 16 . . . . . . . . 9  |-  ( (
ph  /\  A  e.  NN )  ->  ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  |->  ( m  /  ( 2 ^ A ) ) )  Fn  ( 0 ... ( A  x.  (
2 ^ A ) ) ) )
102101adantr 452 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) )  Fn  ( 0 ... ( A  x.  ( 2 ^ A
) ) ) )
103102adantr 452 . . . . . . 7  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) )  Fn  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) )
104 fnfvelrn 5826 . . . . . . 7  |-  ( ( ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) )  Fn  (
0 ... ( A  x.  ( 2 ^ A
) ) )  /\  ( ( A J x )  x.  (
2 ^ A ) )  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) ) )  ->  ( ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  |->  ( m  /  ( 2 ^ A ) ) ) `
 ( ( A J x )  x.  ( 2 ^ A
) ) )  e. 
ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )
105103, 84, 104syl2anc 643 . . . . . 6  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( (
m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) ) `  ( ( A J x )  x.  ( 2 ^ A ) ) )  e.  ran  ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  |->  ( m  /  ( 2 ^ A ) ) ) )
10693, 105eqeltrrd 2479 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  ( A J x )  <_  A
)  ->  ( A J x )  e. 
ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )
10779nnnn0d 10230 . . . . . . . . . . 11  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A  x.  ( 2 ^ A ) )  e.  NN0 )
108107, 75syl6eleq 2494 . . . . . . . . . 10  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A  x.  ( 2 ^ A ) )  e.  ( ZZ>= `  0
) )
109 eluzfz2 11021 . . . . . . . . . 10  |-  ( ( A  x.  ( 2 ^ A ) )  e.  ( ZZ>= `  0
)  ->  ( A  x.  ( 2 ^ A
) )  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) )
110108, 109syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  ( A  x.  ( 2 ^ A ) )  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) ) )
111 oveq1 6047 . . . . . . . . . 10  |-  ( m  =  ( A  x.  ( 2 ^ A
) )  ->  (
m  /  ( 2 ^ A ) )  =  ( ( A  x.  ( 2 ^ A ) )  / 
( 2 ^ A
) ) )
112 ovex 6065 . . . . . . . . . 10  |-  ( ( A  x.  ( 2 ^ A ) )  /  ( 2 ^ A ) )  e. 
_V
113111, 86, 112fvmpt 5765 . . . . . . . . 9  |-  ( ( A  x.  ( 2 ^ A ) )  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  ->  (
( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) `  ( A  x.  ( 2 ^ A ) ) )  =  ( ( A  x.  ( 2 ^ A ) )  /  ( 2 ^ A ) ) )
114110, 113syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) `  ( A  x.  ( 2 ^ A ) ) )  =  ( ( A  x.  ( 2 ^ A ) )  /  ( 2 ^ A ) ) )
11528recnd 9070 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  A  e.  CC )
11632nncnd 9972 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  e.  CC )
11732nnne0d 10000 . . . . . . . . 9  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
2 ^ A )  =/=  0 )
118115, 116, 117divcan4d 9752 . . . . . . . 8  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( A  x.  (
2 ^ A ) )  /  ( 2 ^ A ) )  =  A )
119114, 118eqtrd 2436 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) `  ( A  x.  ( 2 ^ A ) ) )  =  A )
120 fnfvelrn 5826 . . . . . . . 8  |-  ( ( ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) )  Fn  (
0 ... ( A  x.  ( 2 ^ A
) ) )  /\  ( A  x.  (
2 ^ A ) )  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) ) )  ->  ( ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  |->  ( m  /  ( 2 ^ A ) ) ) `
 ( A  x.  ( 2 ^ A
) ) )  e. 
ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )
121102, 110, 120syl2anc 643 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) `  ( A  x.  ( 2 ^ A ) ) )  e.  ran  (
m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) ) )
122119, 121eqeltrrd 2479 . . . . . 6  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  A  e.  ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )
123122adantr 452 . . . . 5  |-  ( ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  /\  -.  ( A J x )  <_  A )  ->  A  e.  ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )
124106, 123ifclda 3726 . . . 4  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
)  e.  ran  (
m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) ) )
125 eluzfz1 11020 . . . . . . . 8  |-  ( ( A  x.  ( 2 ^ A ) )  e.  ( ZZ>= `  0
)  ->  0  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) )
126108, 125syl 16 . . . . . . 7  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) )
127 oveq1 6047 . . . . . . . 8  |-  ( m  =  0  ->  (
m  /  ( 2 ^ A ) )  =  ( 0  / 
( 2 ^ A
) ) )
128 ovex 6065 . . . . . . . 8  |-  ( 0  /  ( 2 ^ A ) )  e. 
_V
129127, 86, 128fvmpt 5765 . . . . . . 7  |-  ( 0  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  ->  (
( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) `  0
)  =  ( 0  /  ( 2 ^ A ) ) )
130126, 129syl 16 . . . . . 6  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) `  0
)  =  ( 0  /  ( 2 ^ A ) ) )
131 nncn 9964 . . . . . . . 8  |-  ( ( 2 ^ A )  e.  NN  ->  (
2 ^ A )  e.  CC )
132 nnne0 9988 . . . . . . . 8  |-  ( ( 2 ^ A )  e.  NN  ->  (
2 ^ A )  =/=  0 )
133131, 132div0d 9745 . . . . . . 7  |-  ( ( 2 ^ A )  e.  NN  ->  (
0  /  ( 2 ^ A ) )  =  0 )
13432, 133syl 16 . . . . . 6  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
0  /  ( 2 ^ A ) )  =  0 )
135130, 134eqtrd 2436 . . . . 5  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) `  0
)  =  0 )
136 fnfvelrn 5826 . . . . . 6  |-  ( ( ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) )  Fn  (
0 ... ( A  x.  ( 2 ^ A
) ) )  /\  0  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) ) )  ->  ( ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  |->  ( m  /  ( 2 ^ A ) ) ) `
 0 )  e. 
ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )
137102, 126, 136syl2anc 643 . . . . 5  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  (
( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) `  0
)  e.  ran  (
m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) ) )
138135, 137eqeltrrd 2479 . . . 4  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  0  e.  ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )
139 ifcl 3735 . . . 4  |-  ( ( if ( ( A J x )  <_  A ,  ( A J x ) ,  A )  e.  ran  ( m  e.  (
0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) )  /\  0  e. 
ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )  ->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 )  e.  ran  ( m  e.  ( 0 ... ( A  x.  (
2 ^ A ) ) )  |->  ( m  /  ( 2 ^ A ) ) ) )
140124, 138, 139syl2anc 643 . . 3  |-  ( ( ( ph  /\  A  e.  NN )  /\  x  e.  RR )  ->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 )  e.  ran  ( m  e.  (
0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) ) )
141 eqid 2404 . . 3  |-  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 ) )  =  ( x  e.  RR  |->  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 ) )
142140, 141fmptd 5852 . 2  |-  ( (
ph  /\  A  e.  NN )  ->  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A ) ,  0 ) ) : RR --> ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) ) 
|->  ( m  /  (
2 ^ A ) ) ) )
143 mbfi1fseq.1 . . . . 5  |-  ( ph  ->  F  e. MblFn )
144 mbfi1fseq.4 . . . . 5  |-  G  =  ( m  e.  NN  |->  ( x  e.  RR  |->  if ( x  e.  (
-u m [,] m
) ,  if ( ( m J x )  <_  m , 
( m J x ) ,  m ) ,  0 ) ) )
145143, 5, 21, 144mbfi1fseqlem2 19561 . . . 4  |-  ( A  e.  NN  ->  ( G `  A )  =  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) ) )
146145adantl 453 . . 3  |-  ( (
ph  /\  A  e.  NN )  ->  ( G `
 A )  =  ( x  e.  RR  |->  if ( x  e.  (
-u A [,] A
) ,  if ( ( A J x )  <_  A , 
( A J x ) ,  A ) ,  0 ) ) )
147146feq1d 5539 . 2  |-  ( (
ph  /\  A  e.  NN )  ->  ( ( G `  A ) : RR --> ran  (
m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) )  <->  ( x  e.  RR  |->  if ( x  e.  ( -u A [,] A ) ,  if ( ( A J x )  <_  A ,  ( A J x ) ,  A
) ,  0 ) ) : RR --> ran  (
m  e.  ( 0 ... ( A  x.  ( 2 ^ A
) ) )  |->  ( m  /  ( 2 ^ A ) ) ) ) )
148142, 147mpbird 224 1  |-  ( (
ph  /\  A  e.  NN )  ->  ( G `
 A ) : RR --> ran  ( m  e.  ( 0 ... ( A  x.  ( 2 ^ A ) ) )  |->  ( m  / 
( 2 ^ A
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666    C_ wss 3280   ifcif 3699   class class class wbr 4172    e. cmpt 4226    X. cxp 4835   ran crn 4838    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040    e. cmpt2 6042   RRcr 8945   0cc0 8946    x. cmul 8951    +oocpnf 9073   RR*cxr 9075    < clt 9076    <_ cle 9077   -ucneg 9248    / cdiv 9633   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   [,)cico 10874   [,]cicc 10875   ...cfz 10999   |_cfl 11156   ^cexp 11337  MblFncmbf 19459
This theorem is referenced by:  mbfi1fseqlem4  19563
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-n0 10178  df-z 10239  df-uz 10445  df-ico 10878  df-fz 11000  df-fl 11157  df-seq 11279  df-exp 11338
  Copyright terms: Public domain W3C validator