MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfi1flimlem Structured version   Unicode version

Theorem mbfi1flimlem 22107
Description: Lemma for mbfi1flim 22108. (Contributed by Mario Carneiro, 5-Sep-2014.)
Hypotheses
Ref Expression
mbfi1flim.1  |-  ( ph  ->  F  e. MblFn )
mbfi1flimlem.2  |-  ( ph  ->  F : RR --> RR )
Assertion
Ref Expression
mbfi1flimlem  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
Distinct variable groups:    g, n, x, F    ph, g, n, x

Proof of Theorem mbfi1flimlem
Dummy variables  y 
f  h  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfi1flimlem.2 . . . . 5  |-  ( ph  ->  F : RR --> RR )
21ffvelrnda 6016 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  ( F `
 y )  e.  RR )
31feqmptd 5911 . . . . 5  |-  ( ph  ->  F  =  ( y  e.  RR  |->  ( F `
 y ) ) )
4 mbfi1flim.1 . . . . 5  |-  ( ph  ->  F  e. MblFn )
53, 4eqeltrrd 2532 . . . 4  |-  ( ph  ->  ( y  e.  RR  |->  ( F `  y ) )  e. MblFn )
62, 5mbfpos 22036 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )  e. MblFn )
7 0re 9599 . . . . . 6  |-  0  e.  RR
8 ifcl 3968 . . . . . 6  |-  ( ( ( F `  y
)  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_ 
( F `  y
) ,  ( F `
 y ) ,  0 )  e.  RR )
92, 7, 8sylancl 662 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  e.  RR )
10 max1 11397 . . . . . 6  |-  ( ( 0  e.  RR  /\  ( F `  y )  e.  RR )  -> 
0  <_  if (
0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )
117, 2, 10sylancr 663 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  0  <_  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )
12 elrege0 11638 . . . . 5  |-  ( if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) )
139, 11, 12sylanbrc 664 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  e.  ( 0 [,) +oo ) )
14 eqid 2443 . . . 4  |-  ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )  =  ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) )
1513, 14fmptd 6040 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
166, 15mbfi1fseq 22106 . 2  |-  ( ph  ->  E. f ( f : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) ) )
172renegcld 9993 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  -u ( F `  y )  e.  RR )
182, 5mbfneg 22035 . . . 4  |-  ( ph  ->  ( y  e.  RR  |->  -u ( F `  y
) )  e. MblFn )
1917, 18mbfpos 22036 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) )  e. MblFn )
20 ifcl 3968 . . . . . 6  |-  ( (
-u ( F `  y )  e.  RR  /\  0  e.  RR )  ->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 )  e.  RR )
2117, 7, 20sylancl 662 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 )  e.  RR )
22 max1 11397 . . . . . 6  |-  ( ( 0  e.  RR  /\  -u ( F `  y
)  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) )
237, 17, 22sylancr 663 . . . . 5  |-  ( (
ph  /\  y  e.  RR )  ->  0  <_  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) )
24 elrege0 11638 . . . . 5  |-  ( if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 )  e.  ( 0 [,) +oo )  <->  ( if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 )  e.  RR  /\  0  <_  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) )
2521, 23, 24sylanbrc 664 . . . 4  |-  ( (
ph  /\  y  e.  RR )  ->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 )  e.  ( 0 [,) +oo ) )
26 eqid 2443 . . . 4  |-  ( y  e.  RR  |->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 ) )  =  ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) )
2725, 26fmptd 6040 . . 3  |-  ( ph  ->  ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) : RR --> ( 0 [,) +oo ) )
2819, 27mbfi1fseq 22106 . 2  |-  ( ph  ->  E. h ( h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )
29 eeanv 1974 . . 3  |-  ( E. f E. h ( ( f : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
f `  n )  /\  ( f `  n
)  oR  <_ 
( f `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  ( h : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  <->  ( E. f ( f : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  /\  E. h ( h : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) ) )
30 3simpb 995 . . . . . . 7  |-  ( ( f : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  ->  (
f : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( f `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) ) )
31 3simpb 995 . . . . . . 7  |-  ( ( h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  ->  (
h : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )
3230, 31anim12i 566 . . . . . 6  |-  ( ( ( f : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
f `  n )  /\  ( f `  n
)  oR  <_ 
( f `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  ( h : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  -> 
( ( f : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  ( h : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 ) ) `  x
) ) ) )
33 an4 824 . . . . . 6  |-  ( ( ( f : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  /\  (
h : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  <->  ( (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 )  /\  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) ) )
3432, 33sylib 196 . . . . 5  |-  ( ( ( f : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
f `  n )  /\  ( f `  n
)  oR  <_ 
( f `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  ( h : NN --> dom  S.1  /\  A. n  e.  NN  (
0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  -> 
( ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 )  /\  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( f `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) ) )
35 r19.26 2970 . . . . . . 7  |-  ( A. x  e.  RR  (
( n  e.  NN  |->  ( ( f `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  <->  ( A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 ) ) `  x
) ) )
36 i1fsub 22093 . . . . . . . . . 10  |-  ( ( x  e.  dom  S.1  /\  y  e.  dom  S.1 )  ->  ( x  oF  -  y )  e.  dom  S.1 )
3736adantl 466 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  (
x  e.  dom  S.1  /\  y  e.  dom  S.1 ) )  ->  (
x  oF  -  y )  e.  dom  S.1 )
38 simprl 756 . . . . . . . . 9  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  f : NN --> dom  S.1 )
39 simprr 757 . . . . . . . . 9  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  h : NN --> dom  S.1 )
40 nnex 10549 . . . . . . . . . 10  |-  NN  e.  _V
4140a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  NN  e.  _V )
42 inidm 3692 . . . . . . . . 9  |-  ( NN 
i^i  NN )  =  NN
4337, 38, 39, 41, 41, 42off 6539 . . . . . . . 8  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  ( f  oF  oF  -  h ) : NN --> dom  S.1 )
44 fveq2 5856 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
4544breq2d 4449 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
0  <_  ( F `  y )  <->  0  <_  ( F `  x ) ) )
4645, 44ifbieq1d 3949 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 )  =  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
47 fvex 5866 . . . . . . . . . . . . . . 15  |-  ( F `
 x )  e. 
_V
48 c0ex 9593 . . . . . . . . . . . . . . 15  |-  0  e.  _V
4947, 48ifex 3995 . . . . . . . . . . . . . 14  |-  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  e. 
_V
5046, 14, 49fvmpt 5941 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  =  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
5150breq2d 4449 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( n  e.  NN  |->  ( ( f `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  <->  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) ) )
5244negeqd 9819 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  -u ( F `  y )  =  -u ( F `  x ) )
5352breq2d 4449 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  (
0  <_  -u ( F `
 y )  <->  0  <_  -u ( F `  x ) ) )
5453, 52ifbieq1d 3949 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 )  =  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )
55 negex 9823 . . . . . . . . . . . . . . 15  |-  -u ( F `  x )  e.  _V
5655, 48ifex 3995 . . . . . . . . . . . . . 14  |-  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 )  e.  _V
5754, 26, 56fvmpt 5941 . . . . . . . . . . . . 13  |-  ( x  e.  RR  ->  (
( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
)  =  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )
5857breq2d 4449 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
)  <->  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) )
5951, 58anbi12d 710 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  <->  ( (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) ) )
6059adantl 466 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  <->  ( (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) ) )
61 nnuz 11127 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
62 1zzd 10902 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  1  e.  ZZ )
63 simprl 756 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 ) )
6440mptex 6128 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) )  e. 
_V
6564a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  e. 
_V )
66 simprr 757 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )
6738ffvelrnda 6016 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  ->  (
f `  n )  e.  dom  S.1 )
68 i1ff 22061 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( f `  n )  e.  dom  S.1  ->  ( f `  n ) : RR --> RR )
6967, 68syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  ->  (
f `  n ) : RR --> RR )
7069ffvelrnda 6016 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  /\  x  e.  RR )  ->  ( ( f `
 n ) `  x )  e.  RR )
7170an32s 804 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( ( f `
 n ) `  x )  e.  RR )
7271recnd 9625 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( ( f `
 n ) `  x )  e.  CC )
73 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )
7472, 73fmptd 6040 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
n  e.  NN  |->  ( ( f `  n
) `  x )
) : NN --> CC )
7574adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) ) : NN --> CC )
7675ffvelrnda 6016 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( f `  n ) `  x
) ) `  k
)  e.  CC )
7739ffvelrnda 6016 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  ->  (
h `  n )  e.  dom  S.1 )
78 i1ff 22061 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( h `  n )  e.  dom  S.1  ->  ( h `  n ) : RR --> RR )
7977, 78syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  ->  (
h `  n ) : RR --> RR )
8079ffvelrnda 6016 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  n  e.  NN )  /\  x  e.  RR )  ->  ( ( h `
 n ) `  x )  e.  RR )
8180an32s 804 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( ( h `
 n ) `  x )  e.  RR )
8281recnd 9625 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  n  e.  NN )  ->  ( ( h `
 n ) `  x )  e.  CC )
83 eqid 2443 . . . . . . . . . . . . . . . 16  |-  ( n  e.  NN  |->  ( ( h `  n ) `
 x ) )  =  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )
8482, 83fmptd 6040 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
n  e.  NN  |->  ( ( h `  n
) `  x )
) : NN --> CC )
8584adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) ) : NN --> CC )
8685ffvelrnda 6016 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) ) `  k
)  e.  CC )
87 ffn 5721 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f : NN --> dom  S.1  ->  f  Fn  NN )
8838, 87syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  f  Fn  NN )
89 ffn 5721 . . . . . . . . . . . . . . . . . . . . 21  |-  ( h : NN --> dom  S.1  ->  h  Fn  NN )
9039, 89syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  h  Fn  NN )
91 eqidd 2444 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
f `  k )  =  ( f `  k ) )
92 eqidd 2444 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
h `  k )  =  ( h `  k ) )
9388, 90, 41, 41, 42, 91, 92ofval 6534 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
( f  oF  oF  -  h
) `  k )  =  ( ( f `
 k )  oF  -  ( h `
 k ) ) )
9493fveq1d 5858 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
( ( f  oF  oF  -  h ) `  k
) `  x )  =  ( ( ( f `  k )  oF  -  (
h `  k )
) `  x )
)
9594adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( ( f  oF  oF  -  h ) `
 k ) `  x )  =  ( ( ( f `  k )  oF  -  ( h `  k ) ) `  x ) )
9638ffvelrnda 6016 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
f `  k )  e.  dom  S.1 )
97 i1ff 22061 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f `  k )  e.  dom  S.1  ->  ( f `  k ) : RR --> RR )
98 ffn 5721 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f `  k ) : RR --> RR  ->  ( f `  k )  Fn  RR )
9996, 97, 983syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
f `  k )  Fn  RR )
10039ffvelrnda 6016 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
h `  k )  e.  dom  S.1 )
101 i1ff 22061 . . . . . . . . . . . . . . . . . . 19  |-  ( ( h `  k )  e.  dom  S.1  ->  ( h `  k ) : RR --> RR )
102 ffn 5721 . . . . . . . . . . . . . . . . . . 19  |-  ( ( h `  k ) : RR --> RR  ->  ( h `  k )  Fn  RR )
103100, 101, 1023syl 20 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  (
h `  k )  Fn  RR )
104 reex 9586 . . . . . . . . . . . . . . . . . . 19  |-  RR  e.  _V
105104a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  ->  RR  e.  _V )
106 inidm 3692 . . . . . . . . . . . . . . . . . 18  |-  ( RR 
i^i  RR )  =  RR
107 eqidd 2444 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( f `
 k ) `  x )  =  ( ( f `  k
) `  x )
)
108 eqidd 2444 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( h `
 k ) `  x )  =  ( ( h `  k
) `  x )
)
10999, 103, 105, 105, 106, 107, 108ofval 6534 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( ( f `  k )  oF  -  (
h `  k )
) `  x )  =  ( ( ( f `  k ) `
 x )  -  ( ( h `  k ) `  x
) ) )
11095, 109eqtrd 2484 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  k  e.  NN )  /\  x  e.  RR )  ->  ( ( ( f  oF  oF  -  h ) `
 k ) `  x )  =  ( ( ( f `  k ) `  x
)  -  ( ( h `  k ) `
 x ) ) )
111110an32s 804 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  k  e.  NN )  ->  ( ( ( f  oF  oF  -  h ) `
 k ) `  x )  =  ( ( ( f `  k ) `  x
)  -  ( ( h `  k ) `
 x ) ) )
112 fveq2 5856 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( f  oF  oF  -  h
) `  n )  =  ( ( f  oF  oF  -  h ) `  k ) )
113112fveq1d 5858 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
( ( f  oF  oF  -  h ) `  n
) `  x )  =  ( ( ( f  oF  oF  -  h ) `
 k ) `  x ) )
114 eqid 2443 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) )  =  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n ) `  x
) )
115 fvex 5866 . . . . . . . . . . . . . . . . 17  |-  ( ( ( f  oF  oF  -  h
) `  k ) `  x )  e.  _V
116113, 114, 115fvmpt 5941 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n ) `  x
) ) `  k
)  =  ( ( ( f  oF  oF  -  h
) `  k ) `  x ) )
117116adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) ) `  k )  =  ( ( ( f  oF  oF  -  h ) `  k
) `  x )
)
118 fveq2 5856 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  (
f `  n )  =  ( f `  k ) )
119118fveq1d 5858 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( f `  n
) `  x )  =  ( ( f `
 k ) `  x ) )
120 fvex 5866 . . . . . . . . . . . . . . . . . 18  |-  ( ( f `  k ) `
 x )  e. 
_V
121119, 73, 120fvmpt 5941 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( f `  n ) `  x
) ) `  k
)  =  ( ( f `  k ) `
 x ) )
122 fveq2 5856 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  (
h `  n )  =  ( h `  k ) )
123122fveq1d 5858 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( h `  n
) `  x )  =  ( ( h `
 k ) `  x ) )
124 fvex 5866 . . . . . . . . . . . . . . . . . 18  |-  ( ( h `  k ) `
 x )  e. 
_V
125123, 83, 124fvmpt 5941 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) ) `  k
)  =  ( ( h `  k ) `
 x ) )
126121, 125oveq12d 6299 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) ) `  k )  -  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) ) `  k
) )  =  ( ( ( f `  k ) `  x
)  -  ( ( h `  k ) `
 x ) ) )
127126adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  k  e.  NN )  ->  ( ( ( n  e.  NN  |->  ( ( f `  n
) `  x )
) `  k )  -  ( ( n  e.  NN  |->  ( ( h `  n ) `
 x ) ) `
 k ) )  =  ( ( ( f `  k ) `
 x )  -  ( ( h `  k ) `  x
) ) )
128111, 117, 1273eqtr4d 2494 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) ) `  k )  =  ( ( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) ) `  k )  -  (
( n  e.  NN  |->  ( ( h `  n ) `  x
) ) `  k
) ) )
129128adantlr 714 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n ) `  x
) ) `  k
)  =  ( ( ( n  e.  NN  |->  ( ( f `  n ) `  x
) ) `  k
)  -  ( ( n  e.  NN  |->  ( ( h `  n
) `  x )
) `  k )
) )
13061, 62, 63, 65, 66, 76, 86, 129climsub 13438 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) ) )
1311adantr 465 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  F : RR --> RR )
132131ffvelrnda 6016 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  ( F `  x )  e.  RR )
133 max0sub 11406 . . . . . . . . . . . . . 14  |-  ( ( F `  x )  e.  RR  ->  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  =  ( F `  x ) )
134132, 133syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  =  ( F `  x ) )
135134adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  -  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  =  ( F `  x ) )
136130, 135breqtrd 4461 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  /\  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  if ( 0  <_ 
( F `  x
) ,  ( F `
 x ) ,  0 )  /\  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  if ( 0  <_  -u ( F `  x ) ,  -u ( F `  x ) ,  0 ) ) )  ->  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) )
137136ex 434 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  if ( 0  <_  ( F `  x ) ,  ( F `  x ) ,  0 )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  if ( 0  <_  -u ( F `
 x ) , 
-u ( F `  x ) ,  0 ) )  ->  (
n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n
) `  x )
)  ~~>  ( F `  x ) ) )
13860, 137sylbid 215 . . . . . . . . 9  |-  ( ( ( ph  /\  (
f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  /\  x  e.  RR )  ->  (
( ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  ->  (
n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n
) `  x )
)  ~~>  ( F `  x ) ) )
139138ralimdva 2851 . . . . . . . 8  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  ( A. x  e.  RR  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  ->  A. x  e.  RR  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
140 ovex 6309 . . . . . . . . 9  |-  ( f  oF  oF  -  h )  e. 
_V
141 feq1 5703 . . . . . . . . . 10  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
g : NN --> dom  S.1  <->  (
f  oF  oF  -  h ) : NN --> dom  S.1 ) )
142 fveq1 5855 . . . . . . . . . . . . . 14  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
g `  n )  =  ( ( f  oF  oF  -  h ) `  n ) )
143142fveq1d 5858 . . . . . . . . . . . . 13  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
( g `  n
) `  x )  =  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )
144143mpteq2dv 4524 . . . . . . . . . . . 12  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  =  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h
) `  n ) `  x ) ) )
145144breq1d 4447 . . . . . . . . . . 11  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
146145ralbidv 2882 . . . . . . . . . 10  |-  ( g  =  ( f  oF  oF  -  h )  ->  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x )  <->  A. x  e.  RR  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) ) )
147141, 146anbi12d 710 . . . . . . . . 9  |-  ( g  =  ( f  oF  oF  -  h )  ->  (
( g : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) )  <-> 
( ( f  oF  oF  -  h ) : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
148140, 147spcev 3187 . . . . . . . 8  |-  ( ( ( f  oF  oF  -  h
) : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( ( f  oF  oF  -  h ) `  n ) `  x
) )  ~~>  ( F `
 x ) )  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
14943, 139, 148syl6an 545 . . . . . . 7  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  ( A. x  e.  RR  ( ( n  e.  NN  |->  ( ( f `  n ) `
 x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x )  /\  ( n  e.  NN  |->  ( ( h `  n ) `  x
) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) )  ->  E. g
( g : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
15035, 149syl5bir 218 . . . . . 6  |-  ( (
ph  /\  ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 ) )  ->  ( ( A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( h `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `
 y ) , 
-u ( F `  y ) ,  0 ) ) `  x
) )  ->  E. g
( g : NN --> dom  S.1  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( g `
 n ) `  x ) )  ~~>  ( F `
 x ) ) ) )
151150expimpd 603 . . . . 5  |-  ( ph  ->  ( ( ( f : NN --> dom  S.1  /\  h : NN --> dom  S.1 )  /\  ( A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
)  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  ->  E. g ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
15234, 151syl5 32 . . . 4  |-  ( ph  ->  ( ( ( f : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  /\  (
h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  ->  E. g ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
153152exlimdvv 1712 . . 3  |-  ( ph  ->  ( E. f E. h ( ( f : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( f `  n )  /\  (
f `  n )  oR  <_  ( f `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( f `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `  x
) )  /\  (
h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  ->  E. g ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
15429, 153syl5bir 218 . 2  |-  ( ph  ->  ( ( E. f
( f : NN --> dom  S.1  /\  A. n  e.  NN  ( 0p  oR  <_  (
f `  n )  /\  ( f `  n
)  oR  <_ 
( f `  (
n  +  1 ) ) )  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( f `  n
) `  x )
)  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  ( F `  y ) ,  ( F `  y ) ,  0 ) ) `
 x ) )  /\  E. h ( h : NN --> dom  S.1  /\ 
A. n  e.  NN  ( 0p  oR  <_  ( h `  n )  /\  (
h `  n )  oR  <_  ( h `
 ( n  + 
1 ) ) )  /\  A. x  e.  RR  ( n  e.  NN  |->  ( ( h `
 n ) `  x ) )  ~~>  ( ( y  e.  RR  |->  if ( 0  <_  -u ( F `  y ) ,  -u ( F `  y ) ,  0 ) ) `  x
) ) )  ->  E. g ( g : NN --> dom  S.1  /\  A. x  e.  RR  (
n  e.  NN  |->  ( ( g `  n
) `  x )
)  ~~>  ( F `  x ) ) ) )
15516, 28, 154mp2and 679 1  |-  ( ph  ->  E. g ( g : NN --> dom  S.1  /\ 
A. x  e.  RR  ( n  e.  NN  |->  ( ( g `  n ) `  x
) )  ~~>  ( F `
 x ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383   E.wex 1599    e. wcel 1804   A.wral 2793   _Vcvv 3095   ifcif 3926   class class class wbr 4437    |-> cmpt 4495   dom cdm 4989    Fn wfn 5573   -->wf 5574   ` cfv 5578  (class class class)co 6281    oFcof 6523    oRcofr 6524   CCcc 9493   RRcr 9494   0cc0 9495   1c1 9496    + caddc 9498   +oocpnf 9628    <_ cle 9632    - cmin 9810   -ucneg 9811   NNcn 10543   [,)cico 11542    ~~> cli 13289  MblFncmbf 22001   S.1citg1 22002   0pc0p 22054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-inf2 8061  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-fal 1389  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-se 4829  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-isom 5587  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-of 6525  df-ofr 6526  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-1o 7132  df-2o 7133  df-oadd 7136  df-er 7313  df-map 7424  df-pm 7425  df-en 7519  df-dom 7520  df-sdom 7521  df-fin 7522  df-fi 7873  df-sup 7903  df-oi 7938  df-card 8323  df-cda 8551  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10214  df-nn 10544  df-2 10601  df-3 10602  df-n0 10803  df-z 10872  df-uz 11093  df-q 11194  df-rp 11232  df-xneg 11329  df-xadd 11330  df-xmul 11331  df-ioo 11544  df-ico 11546  df-icc 11547  df-fz 11684  df-fzo 11807  df-fl 11911  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 12914  df-re 12915  df-im 12916  df-sqrt 13050  df-abs 13051  df-clim 13293  df-rlim 13294  df-sum 13491  df-rest 14802  df-topgen 14823  df-psmet 18390  df-xmet 18391  df-met 18392  df-bl 18393  df-mopn 18394  df-top 19377  df-bases 19379  df-topon 19380  df-cmp 19865  df-ovol 21854  df-vol 21855  df-mbf 22006  df-itg1 22007  df-0p 22055
This theorem is referenced by:  mbfi1flim  22108
  Copyright terms: Public domain W3C validator