MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbff Structured version   Unicode version

Theorem mbff 21080
Description: A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
mbff  |-  ( F  e. MblFn  ->  F : dom  F --> CC )

Proof of Theorem mbff
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ismbf1 21079 . . 3  |-  ( F  e. MblFn 
<->  ( F  e.  ( CC  ^pm  RR )  /\  A. x  e.  ran  (,) ( ( `' ( Re  o.  F )
" x )  e. 
dom  vol  /\  ( `' ( Im  o.  F
) " x )  e.  dom  vol )
) )
21simplbi 460 . 2  |-  ( F  e. MblFn  ->  F  e.  ( CC  ^pm  RR )
)
3 cnex 9355 . . . 4  |-  CC  e.  _V
4 reex 9365 . . . 4  |-  RR  e.  _V
53, 4elpm2 7236 . . 3  |-  ( F  e.  ( CC  ^pm  RR )  <->  ( F : dom  F --> CC  /\  dom  F 
C_  RR ) )
65simplbi 460 . 2  |-  ( F  e.  ( CC  ^pm  RR )  ->  F : dom  F --> CC )
72, 6syl 16 1  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1756   A.wral 2710    C_ wss 3323   `'ccnv 4834   dom cdm 4835   ran crn 4836   "cima 4838    o. ccom 4839   -->wf 5409  (class class class)co 6086    ^pm cpm 7207   CCcc 9272   RRcr 9273   (,)cioo 11292   Recre 12578   Imcim 12579   volcvol 20922  MblFncmbf 21069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-id 4631  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-pm 7209  df-mbf 21074
This theorem is referenced by:  mbfdm  21081  mbfmptcl  21090  mbfres  21097  mbfimaopnlem  21108  mbfadd  21114  mbfsub  21115  mbfmul  21179  iblcnlem  21241  bddmulibl  21291  bddibl  21292  bddiblnc  28415
  Copyright terms: Public domain W3C validator