MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfeqalem Structured version   Unicode version

Theorem mbfeqalem 21252
Description: Lemma for mbfeqa 21253. (Contributed by Mario Carneiro, 2-Sep-2014.)
Hypotheses
Ref Expression
mbfeqa.1  |-  ( ph  ->  A  C_  RR )
mbfeqa.2  |-  ( ph  ->  ( vol* `  A )  =  0 )
mbfeqa.3  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
mbfeqalem.4  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  RR )
mbfeqalem.5  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  RR )
Assertion
Ref Expression
mbfeqalem  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    C( x)    D( x)

Proof of Theorem mbfeqalem
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inundif 3864 . . . . 5  |-  ( ( ( `' ( x  e.  B  |->  D )
" y )  i^i  ( `' ( x  e.  B  |->  C )
" y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )  =  ( `' ( x  e.  B  |->  D )
" y )
2 incom 3650 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y )  i^i  ( `' ( x  e.  B  |->  D ) " y ) )
3 dfin4 3697 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )
42, 3eqtri 2483 . . . . . . 7  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )
5 id 22 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  e.  dom  vol 
->  ( `' ( x  e.  B  |->  C )
" y )  e. 
dom  vol )
6 symdif2 3723 . . . . . . . . . . . 12  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  \ 
( `' ( x  e.  B  |->  D )
" y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )  =  { z  |  -.  ( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) }
7 eldif 3445 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ( B  \  A )  <->  ( z  e.  B  /\  -.  z  e.  A ) )
8 mbfeqa.3 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  =  D )
9 eldifi 3585 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  ( B  \  A )  ->  x  e.  B )
109adantl 466 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  x  e.  B )
11 mbfeqalem.4 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  B )  ->  C  e.  RR )
129, 11sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  C  e.  RR )
13 eqid 2454 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  B  |->  C )  =  ( x  e.  B  |->  C )
1413fvmpt2 5889 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  B  /\  C  e.  RR )  ->  ( ( x  e.  B  |->  C ) `  x )  =  C )
1510, 12, 14syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  x )  =  C )
16 mbfeqalem.5 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  B )  ->  D  e.  RR )
179, 16sylan2 474 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  D  e.  RR )
18 eqid 2454 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x  e.  B  |->  D )  =  ( x  e.  B  |->  D )
1918fvmpt2 5889 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  B  /\  D  e.  RR )  ->  ( ( x  e.  B  |->  D ) `  x )  =  D )
2010, 17, 19syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  D ) `  x )  =  D )
218, 15, 203eqtr4d 2505 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `
 x ) )
2221ralrimiva 2829 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  A. x  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
) )
23 nfv 1674 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ z ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
)
24 nffvmpt1 5806 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ x
( ( x  e.  B  |->  C ) `  z )
25 nffvmpt1 5806 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  F/_ x
( ( x  e.  B  |->  D ) `  z )
2624, 25nfeq 2626 . . . . . . . . . . . . . . . . . . . . . . 23  |-  F/ x
( ( x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `  z
)
27 fveq2 5798 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  (
( x  e.  B  |->  C ) `  x
)  =  ( ( x  e.  B  |->  C ) `  z ) )
28 fveq2 5798 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  =  z  ->  (
( x  e.  B  |->  D ) `  x
)  =  ( ( x  e.  B  |->  D ) `  z ) )
2927, 28eqeq12d 2476 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  z  ->  (
( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `  x
)  <->  ( ( x  e.  B  |->  C ) `
 z )  =  ( ( x  e.  B  |->  D ) `  z ) ) )
3023, 26, 29cbvral 3047 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A. x  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  x )  =  ( ( x  e.  B  |->  D ) `
 x )  <->  A. z  e.  ( B  \  A
) ( ( x  e.  B  |->  C ) `
 z )  =  ( ( x  e.  B  |->  D ) `  z ) )
3122, 30sylib 196 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  A. z  e.  ( B  \  A ) ( ( x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `  z
) )
3231r19.21bi 2918 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  z  e.  ( B  \  A ) )  ->  ( (
x  e.  B  |->  C ) `  z )  =  ( ( x  e.  B  |->  D ) `
 z ) )
3332eleq1d 2523 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  z  e.  ( B  \  A ) )  ->  ( (
( x  e.  B  |->  C ) `  z
)  e.  y  <->  ( (
x  e.  B  |->  D ) `  z )  e.  y ) )
347, 33sylan2br 476 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( z  e.  B  /\  -.  z  e.  A ) )  -> 
( ( ( x  e.  B  |->  C ) `
 z )  e.  y  <->  ( ( x  e.  B  |->  D ) `
 z )  e.  y ) )
3534anass1rs 805 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  -.  z  e.  A )  /\  z  e.  B
)  ->  ( (
( x  e.  B  |->  C ) `  z
)  e.  y  <->  ( (
x  e.  B  |->  D ) `  z )  e.  y ) )
3635pm5.32da 641 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
( z  e.  B  /\  ( ( x  e.  B  |->  C ) `  z )  e.  y )  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  D ) `  z )  e.  y ) ) )
3711, 13fmptd 5975 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x  e.  B  |->  C ) : B --> RR )
38 ffn 5666 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  B  |->  C ) : B --> RR  ->  ( x  e.  B  |->  C )  Fn  B )
3937, 38syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  B  |->  C )  Fn  B
)
4039adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
x  e.  B  |->  C )  Fn  B )
41 elpreima 5931 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  C )  Fn  B  -> 
( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  ( z  e.  B  /\  (
( x  e.  B  |->  C ) `  z
)  e.  y ) ) )
4240, 41syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  C ) " y
)  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  C ) `  z )  e.  y ) ) )
4316, 18fmptd 5975 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( x  e.  B  |->  D ) : B --> RR )
44 ffn 5666 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  e.  B  |->  D ) : B --> RR  ->  ( x  e.  B  |->  D )  Fn  B )
4543, 44syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( x  e.  B  |->  D )  Fn  B
)
4645adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
x  e.  B  |->  D )  Fn  B )
47 elpreima 5931 . . . . . . . . . . . . . . . . 17  |-  ( ( x  e.  B  |->  D )  Fn  B  -> 
( z  e.  ( `' ( x  e.  B  |->  D ) "
y )  <->  ( z  e.  B  /\  (
( x  e.  B  |->  D ) `  z
)  e.  y ) ) )
4846, 47syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  D ) " y
)  <->  ( z  e.  B  /\  ( ( x  e.  B  |->  D ) `  z )  e.  y ) ) )
4936, 42, 483bitr4d 285 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  -.  z  e.  A )  ->  (
z  e.  ( `' ( x  e.  B  |->  C ) " y
)  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) )
5049ex 434 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( -.  z  e.  A  ->  ( z  e.  ( `' ( x  e.  B  |->  C )
" y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) ) )
5150con1d 124 . . . . . . . . . . . . 13  |-  ( ph  ->  ( -.  ( z  e.  ( `' ( x  e.  B  |->  C ) " y )  <-> 
z  e.  ( `' ( x  e.  B  |->  D ) " y
) )  ->  z  e.  A ) )
5251abssdv 3533 . . . . . . . . . . . 12  |-  ( ph  ->  { z  |  -.  ( z  e.  ( `' ( x  e.  B  |->  C ) "
y )  <->  z  e.  ( `' ( x  e.  B  |->  D ) "
y ) ) } 
C_  A )
536, 52syl5eqss 3507 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) )  u.  (
( `' ( x  e.  B  |->  D )
" y )  \ 
( `' ( x  e.  B  |->  C )
" y ) ) )  C_  A )
5453unssad 3640 . . . . . . . . . 10  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  A )
55 mbfeqa.1 . . . . . . . . . 10  |-  ( ph  ->  A  C_  RR )
5654, 55sstrd 3473 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  RR )
57 mbfeqa.2 . . . . . . . . . 10  |-  ( ph  ->  ( vol* `  A )  =  0 )
58 ovolssnul 21101 . . . . . . . . . 10  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  A  /\  A  C_  RR  /\  ( vol* `  A )  =  0 )  -> 
( vol* `  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  =  0 )
5954, 55, 57, 58syl3anc 1219 . . . . . . . . 9  |-  ( ph  ->  ( vol* `  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  =  0 )
60 nulmbl 21149 . . . . . . . . 9  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  C_  RR  /\  ( vol* `  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) ) )  =  0 )  -> 
( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )
6156, 59, 60syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )
62 difmbl 21156 . . . . . . . 8  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  e. 
dom  vol  /\  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) )  e. 
dom  vol )  ->  (
( `' ( x  e.  B  |->  C )
" y )  \ 
( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
635, 61, 62syl2anr 478 . . . . . . 7  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( ( `' ( x  e.  B  |->  C ) "
y )  \  ( `' ( x  e.  B  |->  D ) "
y ) ) )  e.  dom  vol )
644, 63syl5eqel 2546 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  i^i  ( `' ( x  e.  B  |->  C ) " y
) )  e.  dom  vol )
6553unssbd 3641 . . . . . . . . 9  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  A )
6665, 55sstrd 3473 . . . . . . . 8  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  RR )
67 ovolssnul 21101 . . . . . . . . 9  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  A  /\  A  C_  RR  /\  ( vol* `  A )  =  0 )  -> 
( vol* `  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  =  0 )
6865, 55, 57, 67syl3anc 1219 . . . . . . . 8  |-  ( ph  ->  ( vol* `  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  =  0 )
69 nulmbl 21149 . . . . . . . 8  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  C_  RR  /\  ( vol* `  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) ) )  =  0 )  -> 
( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )
7066, 68, 69syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )
7170adantr 465 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) )  e.  dom  vol )
72 unmbl 21151 . . . . . 6  |-  ( ( ( ( `' ( x  e.  B  |->  D ) " y )  i^i  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol  /\  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) )  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
7364, 71, 72syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
741, 73syl5eqelr 2547 . . . 4  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol )  ->  ( `' ( x  e.  B  |->  D ) " y )  e.  dom  vol )
75 inundif 3864 . . . . 5  |-  ( ( ( `' ( x  e.  B  |->  C )
" y )  i^i  ( `' ( x  e.  B  |->  D )
" y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) ) )  =  ( `' ( x  e.  B  |->  C )
" y )
76 incom 3650 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y )  i^i  ( `' ( x  e.  B  |->  C ) " y ) )
77 dfin4 3697 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  i^i  ( `' ( x  e.  B  |->  C ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )
7876, 77eqtri 2483 . . . . . . 7  |-  ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  =  ( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( `' ( x  e.  B  |->  C ) " y
) ) )
79 id 22 . . . . . . . 8  |-  ( ( `' ( x  e.  B  |->  D ) "
y )  e.  dom  vol 
->  ( `' ( x  e.  B  |->  D )
" y )  e. 
dom  vol )
80 difmbl 21156 . . . . . . . 8  |-  ( ( ( `' ( x  e.  B  |->  D )
" y )  e. 
dom  vol  /\  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) )  e. 
dom  vol )  ->  (
( `' ( x  e.  B  |->  D )
" y )  \ 
( ( `' ( x  e.  B  |->  D ) " y ) 
\  ( `' ( x  e.  B  |->  C ) " y ) ) )  e.  dom  vol )
8179, 70, 80syl2anr 478 . . . . . . 7  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  D ) " y
)  \  ( ( `' ( x  e.  B  |->  D ) "
y )  \  ( `' ( x  e.  B  |->  C ) "
y ) ) )  e.  dom  vol )
8278, 81syl5eqel 2546 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  i^i  ( `' ( x  e.  B  |->  D ) " y
) )  e.  dom  vol )
8361adantr 465 . . . . . 6  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( `' ( x  e.  B  |->  C ) " y
)  \  ( `' ( x  e.  B  |->  D ) " y
) )  e.  dom  vol )
84 unmbl 21151 . . . . . 6  |-  ( ( ( ( `' ( x  e.  B  |->  C ) " y )  i^i  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol  /\  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) )  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
8582, 83, 84syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( ( ( `' ( x  e.  B  |->  C ) "
y )  i^i  ( `' ( x  e.  B  |->  D ) "
y ) )  u.  ( ( `' ( x  e.  B  |->  C ) " y ) 
\  ( `' ( x  e.  B  |->  D ) " y ) ) )  e.  dom  vol )
8675, 85syl5eqelr 2547 . . . 4  |-  ( (
ph  /\  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol )  ->  ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol )
8774, 86impbida 828 . . 3  |-  ( ph  ->  ( ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol  <->  ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
8887ralbidv 2845 . 2  |-  ( ph  ->  ( A. y  e. 
ran  (,) ( `' ( x  e.  B  |->  C ) " y )  e.  dom  vol  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
89 ismbf 21240 . . 3  |-  ( ( x  e.  B  |->  C ) : B --> RR  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  C ) " y
)  e.  dom  vol ) )
9037, 89syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  C ) "
y )  e.  dom  vol ) )
91 ismbf 21240 . . 3  |-  ( ( x  e.  B  |->  D ) : B --> RR  ->  ( ( x  e.  B  |->  D )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) " y
)  e.  dom  vol ) )
9243, 91syl 16 . 2  |-  ( ph  ->  ( ( x  e.  B  |->  D )  e. MblFn  <->  A. y  e.  ran  (,) ( `' ( x  e.  B  |->  D ) "
y )  e.  dom  vol ) )
9388, 90, 923bitr4d 285 1  |-  ( ph  ->  ( ( x  e.  B  |->  C )  e. MblFn  <->  ( x  e.  B  |->  D )  e. MblFn ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   {cab 2439   A.wral 2798    \ cdif 3432    u. cun 3433    i^i cin 3434    C_ wss 3435    |-> cmpt 4457   `'ccnv 4946   dom cdm 4947   ran crn 4948   "cima 4950    Fn wfn 5520   -->wf 5521   ` cfv 5525   RRcr 9391   0cc0 9392   (,)cioo 11410   vol*covol 21077   volcvol 21078  MblFncmbf 21226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-map 7325  df-pm 7326  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-sup 7801  df-oi 7834  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-n0 10690  df-z 10757  df-uz 10972  df-q 11064  df-rp 11102  df-xadd 11200  df-ioo 11414  df-ico 11416  df-icc 11417  df-fz 11554  df-fzo 11665  df-fl 11758  df-seq 11923  df-exp 11982  df-hash 12220  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-clim 13083  df-sum 13281  df-xmet 17934  df-met 17935  df-ovol 21079  df-vol 21080  df-mbf 21231
This theorem is referenced by:  mbfeqa  21253
  Copyright terms: Public domain W3C validator