MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfadd Structured version   Unicode version

Theorem mbfadd 22153
Description: The sum of two measurable functions is measurable. (Contributed by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
mbfadd.1  |-  ( ph  ->  F  e. MblFn )
mbfadd.2  |-  ( ph  ->  G  e. MblFn )
Assertion
Ref Expression
mbfadd  |-  ( ph  ->  ( F  oF  +  G )  e. MblFn
)

Proof of Theorem mbfadd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mbfadd.1 . . . . 5  |-  ( ph  ->  F  e. MblFn )
2 mbff 22119 . . . . 5  |-  ( F  e. MblFn  ->  F : dom  F --> CC )
31, 2syl 16 . . . 4  |-  ( ph  ->  F : dom  F --> CC )
4 ffn 5639 . . . 4  |-  ( F : dom  F --> CC  ->  F  Fn  dom  F )
53, 4syl 16 . . 3  |-  ( ph  ->  F  Fn  dom  F
)
6 mbfadd.2 . . . . 5  |-  ( ph  ->  G  e. MblFn )
7 mbff 22119 . . . . 5  |-  ( G  e. MblFn  ->  G : dom  G --> CC )
86, 7syl 16 . . . 4  |-  ( ph  ->  G : dom  G --> CC )
9 ffn 5639 . . . 4  |-  ( G : dom  G --> CC  ->  G  Fn  dom  G )
108, 9syl 16 . . 3  |-  ( ph  ->  G  Fn  dom  G
)
11 mbfdm 22120 . . . 4  |-  ( F  e. MblFn  ->  dom  F  e.  dom  vol )
121, 11syl 16 . . 3  |-  ( ph  ->  dom  F  e.  dom  vol )
13 mbfdm 22120 . . . 4  |-  ( G  e. MblFn  ->  dom  G  e.  dom  vol )
146, 13syl 16 . . 3  |-  ( ph  ->  dom  G  e.  dom  vol )
15 eqid 2382 . . 3  |-  ( dom 
F  i^i  dom  G )  =  ( dom  F  i^i  dom  G )
16 eqidd 2383 . . 3  |-  ( (
ph  /\  x  e.  dom  F )  ->  ( F `  x )  =  ( F `  x ) )
17 eqidd 2383 . . 3  |-  ( (
ph  /\  x  e.  dom  G )  ->  ( G `  x )  =  ( G `  x ) )
185, 10, 12, 14, 15, 16, 17offval 6446 . 2  |-  ( ph  ->  ( F  oF  +  G )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  +  ( G `  x
) ) ) )
19 elin 3601 . . . . . . . . 9  |-  ( x  e.  ( dom  F  i^i  dom  G )  <->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
2019simplbi 458 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  F )
21 ffvelrn 5931 . . . . . . . 8  |-  ( ( F : dom  F --> CC  /\  x  e.  dom  F )  ->  ( F `  x )  e.  CC )
223, 20, 21syl2an 475 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( F `  x )  e.  CC )
2319simprbi 462 . . . . . . . 8  |-  ( x  e.  ( dom  F  i^i  dom  G )  ->  x  e.  dom  G )
24 ffvelrn 5931 . . . . . . . 8  |-  ( ( G : dom  G --> CC  /\  x  e.  dom  G )  ->  ( G `  x )  e.  CC )
258, 23, 24syl2an 475 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  ( G `  x )  e.  CC )
2622, 25readdd 13049 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( ( F `  x )  +  ( G `  x ) ) )  =  ( ( Re
`  ( F `  x ) )  +  ( Re `  ( G `  x )
) ) )
2726mpteq2dva 4453 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  +  ( G `  x ) ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Re
`  ( F `  x ) )  +  ( Re `  ( G `  x )
) ) ) )
28 inmbl 22037 . . . . . . 7  |-  ( ( dom  F  e.  dom  vol 
/\  dom  G  e.  dom  vol )  ->  ( dom  F  i^i  dom  G
)  e.  dom  vol )
2912, 14, 28syl2anc 659 . . . . . 6  |-  ( ph  ->  ( dom  F  i^i  dom 
G )  e.  dom  vol )
3022recld 13029 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( F `  x ) )  e.  RR )
3125recld 13029 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Re `  ( G `  x ) )  e.  RR )
32 eqidd 2383 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( F `  x )
) ) )
33 eqidd 2383 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )
3429, 30, 31, 32, 33offval2 6455 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Re
`  ( F `  x ) )  +  ( Re `  ( G `  x )
) ) ) )
3527, 34eqtr4d 2426 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  +  ( G `  x ) ) ) )  =  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) ) )
36 inss1 3632 . . . . . . . . 9  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  F
37 resmpt 5235 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  C_  dom  F  -> 
( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) ) )
3836, 37ax-mp 5 . . . . . . . 8  |-  ( ( x  e.  dom  F  |->  ( F `  x
) )  |`  ( dom  F  i^i  dom  G
) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( F `  x
) )
393feqmptd 5827 . . . . . . . . . 10  |-  ( ph  ->  F  =  ( x  e.  dom  F  |->  ( F `  x ) ) )
4039, 1eqeltrrd 2471 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn )
41 mbfres 22136 . . . . . . . . 9  |-  ( ( ( x  e.  dom  F 
|->  ( F `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  F  |->  ( F `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
4240, 29, 41syl2anc 659 . . . . . . . 8  |-  ( ph  ->  ( ( x  e. 
dom  F  |->  ( F `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
4338, 42syl5eqelr 2475 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( F `  x ) )  e. MblFn
)
4422ismbfcn2 22131 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( F `
 x ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  e. MblFn ) ) )
4543, 44mpbid 210 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  e. MblFn ) )
4645simpld 457 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) )  e. MblFn )
47 inss2 3633 . . . . . . . . 9  |-  ( dom 
F  i^i  dom  G ) 
C_  dom  G
48 resmpt 5235 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  C_  dom  G  -> 
( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) ) )
4947, 48ax-mp 5 . . . . . . . 8  |-  ( ( x  e.  dom  G  |->  ( G `  x
) )  |`  ( dom  F  i^i  dom  G
) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( G `  x
) )
508feqmptd 5827 . . . . . . . . . 10  |-  ( ph  ->  G  =  ( x  e.  dom  G  |->  ( G `  x ) ) )
5150, 6eqeltrrd 2471 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn )
52 mbfres 22136 . . . . . . . . 9  |-  ( ( ( x  e.  dom  G 
|->  ( G `  x
) )  e. MblFn  /\  ( dom  F  i^i  dom  G
)  e.  dom  vol )  ->  ( ( x  e.  dom  G  |->  ( G `  x ) )  |`  ( dom  F  i^i  dom  G )
)  e. MblFn )
5351, 29, 52syl2anc 659 . . . . . . . 8  |-  ( ph  ->  ( ( x  e. 
dom  G  |->  ( G `
 x ) )  |`  ( dom  F  i^i  dom 
G ) )  e. MblFn
)
5449, 53syl5eqelr 2475 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( G `  x ) )  e. MblFn
)
5525ismbfcn2 22131 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( G `
 x ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) )  e. MblFn ) ) )
5654, 55mpbid 210 . . . . . 6  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( G `  x ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( G `  x ) ) )  e. MblFn ) )
5756simpld 457 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) )  e. MblFn )
58 eqid 2382 . . . . . 6  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `
 x ) ) )
5930, 58fmptd 5957 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( F `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
60 eqid 2382 . . . . . 6  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `
 x ) ) )
6131, 60fmptd 5957 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( G `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
6246, 57, 59, 61mbfaddlem 22152 . . . 4  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( F `  x ) ) )  oF  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Re `  ( G `  x )
) ) )  e. MblFn
)
6335, 62eqeltrd 2470 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Re `  ( ( F `  x )  +  ( G `  x ) ) ) )  e. MblFn
)
6422, 25imaddd 13050 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( ( F `  x )  +  ( G `  x ) ) )  =  ( ( Im
`  ( F `  x ) )  +  ( Im `  ( G `  x )
) ) )
6564mpteq2dva 4453 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  +  ( G `  x ) ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Im
`  ( F `  x ) )  +  ( Im `  ( G `  x )
) ) ) )
6622imcld 13030 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( F `  x ) )  e.  RR )
6725imcld 13030 . . . . . 6  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
Im `  ( G `  x ) )  e.  RR )
68 eqidd 2383 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( F `  x )
) ) )
69 eqidd 2383 . . . . . 6  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) )  =  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )
7029, 66, 67, 68, 69offval2 6455 . . . . 5  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( Im
`  ( F `  x ) )  +  ( Im `  ( G `  x )
) ) ) )
7165, 70eqtr4d 2426 . . . 4  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  +  ( G `  x ) ) ) )  =  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) ) )
7245simprd 461 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) )  e. MblFn )
7356simprd 461 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) )  e. MblFn )
74 eqid 2382 . . . . . 6  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `
 x ) ) )
7566, 74fmptd 5957 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( F `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
76 eqid 2382 . . . . . 6  |-  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `
 x ) ) )  =  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `
 x ) ) )
7767, 76fmptd 5957 . . . . 5  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( G `  x ) ) ) : ( dom  F  i^i  dom  G ) --> RR )
7872, 73, 75, 77mbfaddlem 22152 . . . 4  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( F `  x ) ) )  oF  +  ( x  e.  ( dom 
F  i^i  dom  G ) 
|->  ( Im `  ( G `  x )
) ) )  e. MblFn
)
7971, 78eqeltrd 2470 . . 3  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( Im `  ( ( F `  x )  +  ( G `  x ) ) ) )  e. MblFn
)
8022, 25addcld 9526 . . . 4  |-  ( (
ph  /\  x  e.  ( dom  F  i^i  dom  G ) )  ->  (
( F `  x
)  +  ( G `
 x ) )  e.  CC )
8180ismbfcn2 22131 . . 3  |-  ( ph  ->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( ( F `  x )  +  ( G `  x ) ) )  e. MblFn 
<->  ( ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Re
`  ( ( F `
 x )  +  ( G `  x
) ) ) )  e. MblFn  /\  ( x  e.  ( dom  F  i^i  dom 
G )  |->  ( Im
`  ( ( F `
 x )  +  ( G `  x
) ) ) )  e. MblFn ) ) )
8263, 79, 81mpbir2and 920 . 2  |-  ( ph  ->  ( x  e.  ( dom  F  i^i  dom  G )  |->  ( ( F `
 x )  +  ( G `  x
) ) )  e. MblFn
)
8318, 82eqeltrd 2470 1  |-  ( ph  ->  ( F  oF  +  G )  e. MblFn
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1826    i^i cin 3388    C_ wss 3389    |-> cmpt 4425   dom cdm 4913    |` cres 4915    Fn wfn 5491   -->wf 5492   ` cfv 5496  (class class class)co 6196    oFcof 6437   CCcc 9401   RRcr 9402    + caddc 9406   Recre 12932   Imcim 12933   volcvol 21960  MblFncmbf 22108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-inf2 7972  ax-cc 8728  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480  ax-pre-sup 9481
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-int 4200  df-iun 4245  df-disj 4339  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-se 4753  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-isom 5505  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-of 6439  df-om 6600  df-1st 6699  df-2nd 6700  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-omul 7053  df-er 7229  df-map 7340  df-pm 7341  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-sup 7816  df-oi 7850  df-card 8233  df-acn 8236  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-n0 10713  df-z 10782  df-uz 11002  df-q 11102  df-rp 11140  df-xadd 11240  df-ioo 11454  df-ioc 11455  df-ico 11456  df-icc 11457  df-fz 11594  df-fzo 11718  df-fl 11828  df-seq 12011  df-exp 12070  df-hash 12308  df-cj 12934  df-re 12935  df-im 12936  df-sqrt 13070  df-abs 13071  df-clim 13313  df-rlim 13314  df-sum 13511  df-xmet 18525  df-met 18526  df-ovol 21961  df-vol 21962  df-mbf 22113
This theorem is referenced by:  mbfsub  22154  mbfmulc2  22155  mbfmul  22218  itg2monolem1  22242  itg2addlem  22250  ibladd  22312
  Copyright terms: Public domain W3C validator