HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mayetes3i Structured version   Unicode version

Theorem mayetes3i 26775
Description: Mayet's equation E^*3, derived from E3. Solution, for n = 3, to open problem in Remark (b) after Theorem 7.1 of [Mayet3] p. 1240. (Contributed by NM, 10-May-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
mayetes3.a  |-  A  e. 
CH
mayetes3.b  |-  B  e. 
CH
mayetes3.c  |-  C  e. 
CH
mayetes3.d  |-  D  e. 
CH
mayetes3.f  |-  F  e. 
CH
mayetes3.g  |-  G  e. 
CH
mayetes3.r  |-  R  e. 
CH
mayetes3.ac  |-  A  C_  ( _|_ `  C )
mayetes3.af  |-  A  C_  ( _|_ `  F )
mayetes3.cf  |-  C  C_  ( _|_ `  F )
mayetes3.ab  |-  A  C_  ( _|_ `  B )
mayetes3.cd  |-  C  C_  ( _|_ `  D )
mayetes3.fg  |-  F  C_  ( _|_ `  G )
mayetes3.rx  |-  R  C_  ( _|_ `  X )
mayetes3.x  |-  X  =  ( ( A  vH  C )  vH  F
)
mayetes3.y  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
mayetes3.z  |-  Z  =  ( ( B  vH  D )  vH  G
)
Assertion
Ref Expression
mayetes3i  |-  ( ( X  vH  R )  i^i  Y )  C_  ( Z  vH  R )

Proof of Theorem mayetes3i
StepHypRef Expression
1 mayetes3.a . . . . . . . . 9  |-  A  e. 
CH
2 mayetes3.c . . . . . . . . 9  |-  C  e. 
CH
31, 2chjcli 26502 . . . . . . . 8  |-  ( A  vH  C )  e. 
CH
4 mayetes3.f . . . . . . . 8  |-  F  e. 
CH
53, 4chjcli 26502 . . . . . . 7  |-  ( ( A  vH  C )  vH  F )  e. 
CH
6 mayetes3.r . . . . . . 7  |-  R  e. 
CH
75, 6chjcomi 26513 . . . . . 6  |-  ( ( ( A  vH  C
)  vH  F )  vH  R )  =  ( R  vH  ( ( A  vH  C )  vH  F ) )
87eqimssi 3553 . . . . 5  |-  ( ( ( A  vH  C
)  vH  F )  vH  R )  C_  ( R  vH  ( ( A  vH  C )  vH  F ) )
9 mayetes3.b . . . . . . . . . . 11  |-  B  e. 
CH
101, 9chjcli 26502 . . . . . . . . . 10  |-  ( A  vH  B )  e. 
CH
1110, 6chub1i 26514 . . . . . . . . 9  |-  ( A  vH  B )  C_  ( ( A  vH  B )  vH  R
)
121, 9, 6chjassi 26531 . . . . . . . . 9  |-  ( ( A  vH  B )  vH  R )  =  ( A  vH  ( B  vH  R ) )
1311, 12sseqtri 3531 . . . . . . . 8  |-  ( A  vH  B )  C_  ( A  vH  ( B  vH  R ) )
149, 6chjcli 26502 . . . . . . . . . 10  |-  ( B  vH  R )  e. 
CH
151, 14chjcli 26502 . . . . . . . . 9  |-  ( A  vH  ( B  vH  R ) )  e. 
CH
1615, 6chub2i 26515 . . . . . . . 8  |-  ( A  vH  ( B  vH  R ) )  C_  ( R  vH  ( A  vH  ( B  vH  R ) ) )
1713, 16sstri 3508 . . . . . . 7  |-  ( A  vH  B )  C_  ( R  vH  ( A  vH  ( B  vH  R ) ) )
18 mayetes3.d . . . . . . . . . . 11  |-  D  e. 
CH
192, 18chjcli 26502 . . . . . . . . . 10  |-  ( C  vH  D )  e. 
CH
2019, 6chub1i 26514 . . . . . . . . 9  |-  ( C  vH  D )  C_  ( ( C  vH  D )  vH  R
)
212, 18, 6chjassi 26531 . . . . . . . . 9  |-  ( ( C  vH  D )  vH  R )  =  ( C  vH  ( D  vH  R ) )
2220, 21sseqtri 3531 . . . . . . . 8  |-  ( C  vH  D )  C_  ( C  vH  ( D  vH  R ) )
2318, 6chjcli 26502 . . . . . . . . . 10  |-  ( D  vH  R )  e. 
CH
242, 23chjcli 26502 . . . . . . . . 9  |-  ( C  vH  ( D  vH  R ) )  e. 
CH
2524, 6chub2i 26515 . . . . . . . 8  |-  ( C  vH  ( D  vH  R ) )  C_  ( R  vH  ( C  vH  ( D  vH  R ) ) )
2622, 25sstri 3508 . . . . . . 7  |-  ( C  vH  D )  C_  ( R  vH  ( C  vH  ( D  vH  R ) ) )
27 ss2in 3721 . . . . . . 7  |-  ( ( ( A  vH  B
)  C_  ( R  vH  ( A  vH  ( B  vH  R ) ) )  /\  ( C  vH  D )  C_  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  ->  ( ( A  vH  B )  i^i  ( C  vH  D
) )  C_  (
( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) ) )
2817, 26, 27mp2an 672 . . . . . 6  |-  ( ( A  vH  B )  i^i  ( C  vH  D ) )  C_  ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )
29 mayetes3.g . . . . . . . . . 10  |-  G  e. 
CH
304, 29chjcli 26502 . . . . . . . . 9  |-  ( F  vH  G )  e. 
CH
3130, 6chub1i 26514 . . . . . . . 8  |-  ( F  vH  G )  C_  ( ( F  vH  G )  vH  R
)
324, 29, 6chjassi 26531 . . . . . . . 8  |-  ( ( F  vH  G )  vH  R )  =  ( F  vH  ( G  vH  R ) )
3331, 32sseqtri 3531 . . . . . . 7  |-  ( F  vH  G )  C_  ( F  vH  ( G  vH  R ) )
3429, 6chjcli 26502 . . . . . . . . 9  |-  ( G  vH  R )  e. 
CH
354, 34chjcli 26502 . . . . . . . 8  |-  ( F  vH  ( G  vH  R ) )  e. 
CH
3635, 6chub2i 26515 . . . . . . 7  |-  ( F  vH  ( G  vH  R ) )  C_  ( R  vH  ( F  vH  ( G  vH  R ) ) )
3733, 36sstri 3508 . . . . . 6  |-  ( F  vH  G )  C_  ( R  vH  ( F  vH  ( G  vH  R ) ) )
38 ss2in 3721 . . . . . 6  |-  ( ( ( ( A  vH  B )  i^i  ( C  vH  D ) ) 
C_  ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  /\  ( F  vH  G ) 
C_  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )  ->  (
( ( A  vH  B )  i^i  ( C  vH  D ) )  i^i  ( F  vH  G ) )  C_  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )
3928, 37, 38mp2an 672 . . . . 5  |-  ( ( ( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( F  vH  G
) )  C_  (
( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
40 ss2in 3721 . . . . 5  |-  ( ( ( ( ( A  vH  C )  vH  F )  vH  R
)  C_  ( R  vH  ( ( A  vH  C )  vH  F
) )  /\  (
( ( A  vH  B )  i^i  ( C  vH  D ) )  i^i  ( F  vH  G ) )  C_  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )  ->  (
( ( ( A  vH  C )  vH  F )  vH  R
)  i^i  ( (
( A  vH  B
)  i^i  ( C  vH  D ) )  i^i  ( F  vH  G
) ) )  C_  ( ( R  vH  ( ( A  vH  C )  vH  F
) )  i^i  (
( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) ) )
418, 39, 40mp2an 672 . . . 4  |-  ( ( ( ( A  vH  C )  vH  F
)  vH  R )  i^i  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) ) )  C_  ( ( R  vH  ( ( A  vH  C )  vH  F ) )  i^i  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )
4215, 24chincli 26505 . . . . . . 7  |-  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  e.  CH
4342, 35chincli 26505 . . . . . 6  |-  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )  e.  CH
44 mayetes3.x . . . . . . . . . . 11  |-  X  =  ( ( A  vH  C )  vH  F
)
4544, 5eqeltri 2541 . . . . . . . . . 10  |-  X  e. 
CH
4645choccli 26352 . . . . . . . . 9  |-  ( _|_ `  X )  e.  CH
47 mayetes3.rx . . . . . . . . 9  |-  R  C_  ( _|_ `  X )
486, 46, 47lecmii 26648 . . . . . . . 8  |-  R  C_H  ( _|_ `  X )
496, 45cmcm2i 26638 . . . . . . . 8  |-  ( R  C_H  X  <->  R  C_H  ( _|_ `  X ) )
5048, 49mpbir 209 . . . . . . 7  |-  R  C_H  X
5150, 44breqtri 4479 . . . . . 6  |-  R  C_H  ( ( A  vH  C )  vH  F
)
526, 9chub2i 26515 . . . . . . . . . 10  |-  R  C_  ( B  vH  R )
5314, 1chub2i 26515 . . . . . . . . . 10  |-  ( B  vH  R )  C_  ( A  vH  ( B  vH  R ) )
5452, 53sstri 3508 . . . . . . . . 9  |-  R  C_  ( A  vH  ( B  vH  R ) )
556, 15, 54lecmii 26648 . . . . . . . 8  |-  R  C_H  ( A  vH  ( B  vH  R ) )
566, 18chub2i 26515 . . . . . . . . . 10  |-  R  C_  ( D  vH  R )
5723, 2chub2i 26515 . . . . . . . . . 10  |-  ( D  vH  R )  C_  ( C  vH  ( D  vH  R ) )
5856, 57sstri 3508 . . . . . . . . 9  |-  R  C_  ( C  vH  ( D  vH  R ) )
596, 24, 58lecmii 26648 . . . . . . . 8  |-  R  C_H  ( C  vH  ( D  vH  R ) )
606, 15, 24, 55, 59cm2mi 26671 . . . . . . 7  |-  R  C_H  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )
616, 29chub2i 26515 . . . . . . . . 9  |-  R  C_  ( G  vH  R )
6234, 4chub2i 26515 . . . . . . . . 9  |-  ( G  vH  R )  C_  ( F  vH  ( G  vH  R ) )
6361, 62sstri 3508 . . . . . . . 8  |-  R  C_  ( F  vH  ( G  vH  R ) )
646, 35, 63lecmii 26648 . . . . . . 7  |-  R  C_H  ( F  vH  ( G  vH  R ) )
656, 42, 35, 60, 64cm2mi 26671 . . . . . 6  |-  R  C_H  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )
666, 5, 43, 51, 65fh3i 26668 . . . . 5  |-  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  =  ( ( R  vH  (
( A  vH  C
)  vH  F )
)  i^i  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )
676, 42, 35, 60, 64fh3i 26668 . . . . . . 7  |-  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  =  ( ( R  vH  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
686, 15, 24, 55, 59fh3i 26668 . . . . . . . 8  |-  ( R  vH  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) ) )  =  ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )
6968ineq1i 3692 . . . . . . 7  |-  ( ( R  vH  ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )  =  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
7067, 69eqtri 2486 . . . . . 6  |-  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  =  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) )
7170ineq2i 3693 . . . . 5  |-  ( ( R  vH  ( ( A  vH  C )  vH  F ) )  i^i  ( R  vH  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  =  ( ( R  vH  (
( A  vH  C
)  vH  F )
)  i^i  ( (
( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )
7266, 71eqtr2i 2487 . . . 4  |-  ( ( R  vH  ( ( A  vH  C )  vH  F ) )  i^i  ( ( ( R  vH  ( A  vH  ( B  vH  R ) ) )  i^i  ( R  vH  ( C  vH  ( D  vH  R ) ) ) )  i^i  ( R  vH  ( F  vH  ( G  vH  R ) ) ) ) )  =  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  (
( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )
7341, 72sseqtri 3531 . . 3  |-  ( ( ( ( A  vH  C )  vH  F
)  vH  R )  i^i  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) ) )  C_  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  (
( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )
749, 18chjcli 26502 . . . . . 6  |-  ( B  vH  D )  e. 
CH
7574, 29chjcli 26502 . . . . 5  |-  ( ( B  vH  D )  vH  G )  e. 
CH
766, 75chub2i 26515 . . . 4  |-  R  C_  ( ( ( B  vH  D )  vH  G )  vH  R
)
77 mayetes3.ac . . . . 5  |-  A  C_  ( _|_ `  C )
78 mayetes3.af . . . . 5  |-  A  C_  ( _|_ `  F )
79 mayetes3.cf . . . . 5  |-  C  C_  ( _|_ `  F )
80 mayetes3.ab . . . . . . 7  |-  A  C_  ( _|_ `  B )
811, 2chub1i 26514 . . . . . . . . . . 11  |-  A  C_  ( A  vH  C )
823, 4chub1i 26514 . . . . . . . . . . . 12  |-  ( A  vH  C )  C_  ( ( A  vH  C )  vH  F
)
8382, 44sseqtr4i 3532 . . . . . . . . . . 11  |-  ( A  vH  C )  C_  X
8481, 83sstri 3508 . . . . . . . . . 10  |-  A  C_  X
851, 45chsscon3i 26506 . . . . . . . . . 10  |-  ( A 
C_  X  <->  ( _|_ `  X )  C_  ( _|_ `  A ) )
8684, 85mpbi 208 . . . . . . . . 9  |-  ( _|_ `  X )  C_  ( _|_ `  A )
8747, 86sstri 3508 . . . . . . . 8  |-  R  C_  ( _|_ `  A )
886, 1chsscon2i 26508 . . . . . . . 8  |-  ( R 
C_  ( _|_ `  A
)  <->  A  C_  ( _|_ `  R ) )
8987, 88mpbi 208 . . . . . . 7  |-  A  C_  ( _|_ `  R )
9080, 89ssini 3717 . . . . . 6  |-  A  C_  ( ( _|_ `  B
)  i^i  ( _|_ `  R ) )
919, 6chdmj1i 26526 . . . . . 6  |-  ( _|_ `  ( B  vH  R
) )  =  ( ( _|_ `  B
)  i^i  ( _|_ `  R ) )
9290, 91sseqtr4i 3532 . . . . 5  |-  A  C_  ( _|_ `  ( B  vH  R ) )
93 mayetes3.cd . . . . . . 7  |-  C  C_  ( _|_ `  D )
942, 1chub2i 26515 . . . . . . . . . . 11  |-  C  C_  ( A  vH  C )
9594, 83sstri 3508 . . . . . . . . . 10  |-  C  C_  X
962, 45chsscon3i 26506 . . . . . . . . . 10  |-  ( C 
C_  X  <->  ( _|_ `  X )  C_  ( _|_ `  C ) )
9795, 96mpbi 208 . . . . . . . . 9  |-  ( _|_ `  X )  C_  ( _|_ `  C )
9847, 97sstri 3508 . . . . . . . 8  |-  R  C_  ( _|_ `  C )
996, 2chsscon2i 26508 . . . . . . . 8  |-  ( R 
C_  ( _|_ `  C
)  <->  C  C_  ( _|_ `  R ) )
10098, 99mpbi 208 . . . . . . 7  |-  C  C_  ( _|_ `  R )
10193, 100ssini 3717 . . . . . 6  |-  C  C_  ( ( _|_ `  D
)  i^i  ( _|_ `  R ) )
10218, 6chdmj1i 26526 . . . . . 6  |-  ( _|_ `  ( D  vH  R
) )  =  ( ( _|_ `  D
)  i^i  ( _|_ `  R ) )
103101, 102sseqtr4i 3532 . . . . 5  |-  C  C_  ( _|_ `  ( D  vH  R ) )
104 mayetes3.fg . . . . . . 7  |-  F  C_  ( _|_ `  G )
1054, 3chub2i 26515 . . . . . . . . . . 11  |-  F  C_  ( ( A  vH  C )  vH  F
)
106105, 44sseqtr4i 3532 . . . . . . . . . 10  |-  F  C_  X
1074, 45chsscon3i 26506 . . . . . . . . . 10  |-  ( F 
C_  X  <->  ( _|_ `  X )  C_  ( _|_ `  F ) )
108106, 107mpbi 208 . . . . . . . . 9  |-  ( _|_ `  X )  C_  ( _|_ `  F )
10947, 108sstri 3508 . . . . . . . 8  |-  R  C_  ( _|_ `  F )
1106, 4chsscon2i 26508 . . . . . . . 8  |-  ( R 
C_  ( _|_ `  F
)  <->  F  C_  ( _|_ `  R ) )
111109, 110mpbi 208 . . . . . . 7  |-  F  C_  ( _|_ `  R )
112104, 111ssini 3717 . . . . . 6  |-  F  C_  ( ( _|_ `  G
)  i^i  ( _|_ `  R ) )
11329, 6chdmj1i 26526 . . . . . 6  |-  ( _|_ `  ( G  vH  R
) )  =  ( ( _|_ `  G
)  i^i  ( _|_ `  R ) )
114112, 113sseqtr4i 3532 . . . . 5  |-  F  C_  ( _|_ `  ( G  vH  R ) )
115 eqid 2457 . . . . 5  |-  ( ( A  vH  C )  vH  F )  =  ( ( A  vH  C )  vH  F
)
116 eqid 2457 . . . . 5  |-  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )  =  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) )
11774, 29, 6chjjdiri 26569 . . . . . 6  |-  ( ( ( B  vH  D
)  vH  G )  vH  R )  =  ( ( ( B  vH  D )  vH  R
)  vH  ( G  vH  R ) )
1189, 18, 6chjjdiri 26569 . . . . . . 7  |-  ( ( B  vH  D )  vH  R )  =  ( ( B  vH  R )  vH  ( D  vH  R ) )
119118oveq1i 6306 . . . . . 6  |-  ( ( ( B  vH  D
)  vH  R )  vH  ( G  vH  R
) )  =  ( ( ( B  vH  R )  vH  ( D  vH  R ) )  vH  ( G  vH  R ) )
120117, 119eqtri 2486 . . . . 5  |-  ( ( ( B  vH  D
)  vH  G )  vH  R )  =  ( ( ( B  vH  R )  vH  ( D  vH  R ) )  vH  ( G  vH  R ) )
1211, 14, 2, 23, 4, 34, 77, 78, 79, 92, 103, 114, 115, 116, 120mayete3i 26773 . . . 4  |-  ( ( ( A  vH  C
)  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  C_  ( (
( B  vH  D
)  vH  G )  vH  R )
1225, 43chincli 26505 . . . . 5  |-  ( ( ( A  vH  C
)  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  e.  CH
12375, 6chjcli 26502 . . . . 5  |-  ( ( ( B  vH  D
)  vH  G )  vH  R )  e.  CH
1246, 122, 123chlubii 26517 . . . 4  |-  ( ( R  C_  ( (
( B  vH  D
)  vH  G )  vH  R )  /\  (
( ( A  vH  C )  vH  F
)  i^i  ( (
( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) )  C_  ( (
( B  vH  D
)  vH  G )  vH  R ) )  -> 
( R  vH  (
( ( A  vH  C )  vH  F
)  i^i  ( (
( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  C_  (
( ( B  vH  D )  vH  G
)  vH  R )
)
12576, 121, 124mp2an 672 . . 3  |-  ( R  vH  ( ( ( A  vH  C )  vH  F )  i^i  ( ( ( A  vH  ( B  vH  R ) )  i^i  ( C  vH  ( D  vH  R ) ) )  i^i  ( F  vH  ( G  vH  R ) ) ) ) )  C_  (
( ( B  vH  D )  vH  G
)  vH  R )
12673, 125sstri 3508 . 2  |-  ( ( ( ( A  vH  C )  vH  F
)  vH  R )  i^i  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) ) )  C_  ( (
( B  vH  D
)  vH  G )  vH  R )
12744oveq1i 6306 . . 3  |-  ( X  vH  R )  =  ( ( ( A  vH  C )  vH  F )  vH  R
)
128 mayetes3.y . . 3  |-  Y  =  ( ( ( A  vH  B )  i^i  ( C  vH  D
) )  i^i  ( F  vH  G ) )
129127, 128ineq12i 3694 . 2  |-  ( ( X  vH  R )  i^i  Y )  =  ( ( ( ( A  vH  C )  vH  F )  vH  R )  i^i  (
( ( A  vH  B )  i^i  ( C  vH  D ) )  i^i  ( F  vH  G ) ) )
130 mayetes3.z . . 3  |-  Z  =  ( ( B  vH  D )  vH  G
)
131130oveq1i 6306 . 2  |-  ( Z  vH  R )  =  ( ( ( B  vH  D )  vH  G )  vH  R
)
132126, 129, 1313sstr4i 3538 1  |-  ( ( X  vH  R )  i^i  Y )  C_  ( Z  vH  R )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1395    e. wcel 1819    i^i cin 3470    C_ wss 3471   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   CHcch 25973   _|_cort 25974    vH chj 25977    C_H ccm 25980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cc 8832  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589  ax-hilex 26043  ax-hfvadd 26044  ax-hvcom 26045  ax-hvass 26046  ax-hv0cl 26047  ax-hvaddid 26048  ax-hfvmul 26049  ax-hvmulid 26050  ax-hvmulass 26051  ax-hvdistr1 26052  ax-hvdistr2 26053  ax-hvmul0 26054  ax-hfi 26123  ax-his1 26126  ax-his2 26127  ax-his3 26128  ax-his4 26129  ax-hcompl 26246
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-omul 7153  df-er 7329  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-fi 7889  df-sup 7919  df-oi 7953  df-card 8337  df-acn 8340  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-xneg 11343  df-xadd 11344  df-xmul 11345  df-ioo 11558  df-ico 11560  df-icc 11561  df-fz 11698  df-fzo 11822  df-fl 11932  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-clim 13323  df-rlim 13324  df-sum 13521  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-hom 14736  df-cco 14737  df-rest 14840  df-topn 14841  df-0g 14859  df-gsum 14860  df-topgen 14861  df-pt 14862  df-prds 14865  df-xrs 14919  df-qtop 14924  df-imas 14925  df-xps 14927  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-mulg 16187  df-cntz 16482  df-cmn 16927  df-psmet 18538  df-xmet 18539  df-met 18540  df-bl 18541  df-mopn 18542  df-fbas 18543  df-fg 18544  df-cnfld 18548  df-top 19526  df-bases 19528  df-topon 19529  df-topsp 19530  df-cld 19647  df-ntr 19648  df-cls 19649  df-nei 19726  df-cn 19855  df-cnp 19856  df-lm 19857  df-haus 19943  df-tx 20189  df-hmeo 20382  df-fil 20473  df-fm 20565  df-flim 20566  df-flf 20567  df-xms 20949  df-ms 20950  df-tms 20951  df-cfil 21820  df-cau 21821  df-cmet 21822  df-grpo 25320  df-gid 25321  df-ginv 25322  df-gdiv 25323  df-ablo 25411  df-subgo 25431  df-vc 25566  df-nv 25612  df-va 25615  df-ba 25616  df-sm 25617  df-0v 25618  df-vs 25619  df-nmcv 25620  df-ims 25621  df-dip 25738  df-ssp 25762  df-ph 25855  df-cbn 25906  df-hnorm 26012  df-hba 26013  df-hvsub 26015  df-hlim 26016  df-hcau 26017  df-sh 26251  df-ch 26266  df-oc 26297  df-ch0 26298  df-shs 26353  df-chj 26355  df-pjh 26440  df-cm 26628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator