MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvscacell Structured version   Unicode version

Theorem matvscacell 18784
Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019.)
Hypotheses
Ref Expression
matplusgcell.a  |-  A  =  ( N Mat  R )
matplusgcell.b  |-  B  =  ( Base `  A
)
matvscacell.k  |-  K  =  ( Base `  R
)
matvscacell.v  |-  .x.  =  ( .s `  A )
matvscacell.t  |-  .X.  =  ( .r `  R )
Assertion
Ref Expression
matvscacell  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  (
I ( X  .x.  Y ) J )  =  ( X  .X.  ( I Y J ) ) )

Proof of Theorem matvscacell
StepHypRef Expression
1 matplusgcell.a . . . . 5  |-  A  =  ( N Mat  R )
2 matplusgcell.b . . . . 5  |-  B  =  ( Base `  A
)
3 matvscacell.k . . . . 5  |-  K  =  ( Base `  R
)
4 matvscacell.v . . . . 5  |-  .x.  =  ( .s `  A )
5 matvscacell.t . . . . 5  |-  .X.  =  ( .r `  R )
6 eqid 2467 . . . . 5  |-  ( N  X.  N )  =  ( N  X.  N
)
71, 2, 3, 4, 5, 6matvsca2 18776 . . . 4  |-  ( ( X  e.  K  /\  Y  e.  B )  ->  ( X  .x.  Y
)  =  ( ( ( N  X.  N
)  X.  { X } )  oF 
.X.  Y ) )
87oveqd 6311 . . 3  |-  ( ( X  e.  K  /\  Y  e.  B )  ->  ( I ( X 
.x.  Y ) J )  =  ( I ( ( ( N  X.  N )  X. 
{ X } )  oF  .X.  Y
) J ) )
983ad2ant2 1018 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  (
I ( X  .x.  Y ) J )  =  ( I ( ( ( N  X.  N )  X.  { X } )  oF 
.X.  Y ) J ) )
10 df-ov 6297 . . 3  |-  ( I ( ( ( N  X.  N )  X. 
{ X } )  oF  .X.  Y
) J )  =  ( ( ( ( N  X.  N )  X.  { X }
)  oF  .X.  Y ) `  <. I ,  J >. )
1110a1i 11 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  (
I ( ( ( N  X.  N )  X.  { X }
)  oF  .X.  Y ) J )  =  ( ( ( ( N  X.  N
)  X.  { X } )  oF 
.X.  Y ) `  <. I ,  J >. ) )
12 opelxpi 5036 . . . 4  |-  ( ( I  e.  N  /\  J  e.  N )  -> 
<. I ,  J >.  e.  ( N  X.  N
) )
13123ad2ant3 1019 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  <. I ,  J >.  e.  ( N  X.  N ) )
141, 2matrcl 18760 . . . . . . . 8  |-  ( Y  e.  B  ->  ( N  e.  Fin  /\  R  e.  _V ) )
1514simpld 459 . . . . . . 7  |-  ( Y  e.  B  ->  N  e.  Fin )
1615adantl 466 . . . . . 6  |-  ( ( X  e.  K  /\  Y  e.  B )  ->  N  e.  Fin )
17163ad2ant2 1018 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  N  e.  Fin )
18 xpfi 7801 . . . . 5  |-  ( ( N  e.  Fin  /\  N  e.  Fin )  ->  ( N  X.  N
)  e.  Fin )
1917, 17, 18syl2anc 661 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  ( N  X.  N )  e. 
Fin )
20 simpl 457 . . . . 5  |-  ( ( X  e.  K  /\  Y  e.  B )  ->  X  e.  K )
21203ad2ant2 1018 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  X  e.  K )
222eleq2i 2545 . . . . . . . . 9  |-  ( Y  e.  B  <->  Y  e.  ( Base `  A )
)
2322biimpi 194 . . . . . . . 8  |-  ( Y  e.  B  ->  Y  e.  ( Base `  A
) )
2423adantl 466 . . . . . . 7  |-  ( ( X  e.  K  /\  Y  e.  B )  ->  Y  e.  ( Base `  A ) )
25243ad2ant2 1018 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  Y  e.  ( Base `  A
) )
26 simp1 996 . . . . . . 7  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  R  e.  Ring )
27 eqid 2467 . . . . . . . 8  |-  ( Base `  R )  =  (
Base `  R )
281, 27matbas2 18769 . . . . . . 7  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( ( Base `  R
)  ^m  ( N  X.  N ) )  =  ( Base `  A
) )
2917, 26, 28syl2anc 661 . . . . . 6  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  (
( Base `  R )  ^m  ( N  X.  N
) )  =  (
Base `  A )
)
3025, 29eleqtrrd 2558 . . . . 5  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  Y  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
31 elmapfn 7451 . . . . 5  |-  ( Y  e.  ( ( Base `  R )  ^m  ( N  X.  N ) )  ->  Y  Fn  ( N  X.  N ) )
3230, 31syl 16 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  Y  Fn  ( N  X.  N
) )
33 df-ov 6297 . . . . . 6  |-  ( I Y J )  =  ( Y `  <. I ,  J >. )
3433eqcomi 2480 . . . . 5  |-  ( Y `
 <. I ,  J >. )  =  ( I Y J )
3534a1i 11 . . . 4  |-  ( ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B
)  /\  ( I  e.  N  /\  J  e.  N ) )  /\  <.
I ,  J >.  e.  ( N  X.  N
) )  ->  ( Y `  <. I ,  J >. )  =  ( I Y J ) )
3619, 21, 32, 35ofc1 6557 . . 3  |-  ( ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B
)  /\  ( I  e.  N  /\  J  e.  N ) )  /\  <.
I ,  J >.  e.  ( N  X.  N
) )  ->  (
( ( ( N  X.  N )  X. 
{ X } )  oF  .X.  Y
) `  <. I ,  J >. )  =  ( X  .X.  ( I Y J ) ) )
3713, 36mpdan 668 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  (
( ( ( N  X.  N )  X. 
{ X } )  oF  .X.  Y
) `  <. I ,  J >. )  =  ( X  .X.  ( I Y J ) ) )
389, 11, 373eqtrd 2512 1  |-  ( ( R  e.  Ring  /\  ( X  e.  K  /\  Y  e.  B )  /\  ( I  e.  N  /\  J  e.  N
) )  ->  (
I ( X  .x.  Y ) J )  =  ( X  .X.  ( I Y J ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   _Vcvv 3118   {csn 4032   <.cop 4038    X. cxp 5002    Fn wfn 5588   ` cfv 5593  (class class class)co 6294    oFcof 6532    ^m cmap 7430   Fincfn 7526   Basecbs 14502   .rcmulr 14568   .scvsca 14571   Ringcrg 17047   Mat cmat 18755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4563  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586  ax-cnex 9558  ax-resscn 9559  ax-1cn 9560  ax-icn 9561  ax-addcl 9562  ax-addrcl 9563  ax-mulcl 9564  ax-mulrcl 9565  ax-mulcom 9566  ax-addass 9567  ax-mulass 9568  ax-distr 9569  ax-i2m1 9570  ax-1ne0 9571  ax-1rid 9572  ax-rnegex 9573  ax-rrecex 9574  ax-cnre 9575  ax-pre-lttri 9576  ax-pre-lttrn 9577  ax-pre-ltadd 9578  ax-pre-mulgt0 9579
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-ot 4041  df-uni 4251  df-int 4288  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-tr 4546  df-eprel 4796  df-id 4800  df-po 4805  df-so 4806  df-fr 4843  df-we 4845  df-ord 4886  df-on 4887  df-lim 4888  df-suc 4889  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-f1 5598  df-fo 5599  df-f1o 5600  df-fv 5601  df-riota 6255  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-of 6534  df-om 6695  df-1st 6794  df-2nd 6795  df-supp 6912  df-recs 7052  df-rdg 7086  df-1o 7140  df-oadd 7144  df-er 7321  df-map 7432  df-ixp 7480  df-en 7527  df-dom 7528  df-sdom 7529  df-fin 7530  df-fsupp 7840  df-sup 7911  df-pnf 9640  df-mnf 9641  df-xr 9642  df-ltxr 9643  df-le 9644  df-sub 9817  df-neg 9818  df-nn 10547  df-2 10604  df-3 10605  df-4 10606  df-5 10607  df-6 10608  df-7 10609  df-8 10610  df-9 10611  df-10 10612  df-n0 10806  df-z 10875  df-dec 10987  df-uz 11093  df-fz 11683  df-struct 14504  df-ndx 14505  df-slot 14506  df-base 14507  df-sets 14508  df-ress 14509  df-plusg 14580  df-mulr 14581  df-sca 14583  df-vsca 14584  df-ip 14585  df-tset 14586  df-ple 14587  df-ds 14589  df-hom 14591  df-cco 14592  df-0g 14709  df-prds 14715  df-pws 14717  df-sra 17666  df-rgmod 17667  df-dsmm 18609  df-frlm 18624  df-mat 18756
This theorem is referenced by:  dmatscmcl  18851  scmatscmide  18855  scmatscm  18861  mat2pmatlin  19082  monmatcollpw  19126  pmatcollpwlem  19127  chpmat1dlem  19182  chpdmatlem2  19186  chpdmatlem3  19187
  Copyright terms: Public domain W3C validator