MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matassa Structured version   Unicode version

Theorem matassa 18336
Description: Existence of the matrix algebra, see also the statement "Then Matn(R) is an algebra over R" in [Lang] p. 505. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
matassa.a  |-  A  =  ( N Mat  R )
Assertion
Ref Expression
matassa  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  A  e. AssAlg )

Proof of Theorem matassa
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matassa.a . . 3  |-  A  =  ( N Mat  R )
2 eqid 2443 . . 3  |-  ( Base `  R )  =  (
Base `  R )
31, 2matbas2 18327 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( ( Base `  R
)  ^m  ( N  X.  N ) )  =  ( Base `  A
) )
41matsca2 18326 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  R  =  (Scalar `  A
) )
5 eqidd 2444 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( Base `  R )  =  ( Base `  R
) )
6 eqidd 2444 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( .s `  A
)  =  ( .s
`  A ) )
7 eqid 2443 . . 3  |-  ( R maMul  <. N ,  N ,  N >. )  =  ( R maMul  <. N ,  N ,  N >. )
81, 7matmulr 18318 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  -> 
( R maMul  <. N ,  N ,  N >. )  =  ( .r `  A ) )
9 crngrng 16660 . . 3  |-  ( R  e.  CRing  ->  R  e.  Ring )
101matlmod 18334 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  LMod )
119, 10sylan2 474 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  A  e.  LMod )
121matrng 18335 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  ->  A  e.  Ring )
139, 12sylan2 474 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  A  e.  Ring )
14 simpr 461 . 2  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  R  e.  CRing )
159ad2antlr 726 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  R  e.  Ring )
16 simpll 753 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  N  e.  Fin )
17 eqid 2443 . . . 4  |-  ( .r
`  R )  =  ( .r `  R
)
18 simpr1 994 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  x  e.  ( Base `  R )
)
19 simpr2 995 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  y  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
20 simpr3 996 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
212, 15, 7, 16, 16, 16, 17, 18, 19, 20mamuvs1 18314 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( (
( ( N  X.  N )  X.  {
x } )  oF ( .r `  R ) y ) ( R maMul  <. N ,  N ,  N >. ) z )  =  ( ( ( N  X.  N )  X.  {
x } )  oF ( .r `  R ) ( y ( R maMul  <. N ,  N ,  N >. ) z ) ) )
223adantr 465 . . . . . 6  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( ( Base `  R )  ^m  ( N  X.  N
) )  =  (
Base `  A )
)
2319, 22eleqtrd 2519 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  y  e.  ( Base `  A )
)
24 eqid 2443 . . . . . 6  |-  ( Base `  A )  =  (
Base `  A )
25 eqid 2443 . . . . . 6  |-  ( .s
`  A )  =  ( .s `  A
)
26 eqid 2443 . . . . . 6  |-  ( N  X.  N )  =  ( N  X.  N
)
271, 24, 2, 25, 17, 26matvsca2 18333 . . . . 5  |-  ( ( x  e.  ( Base `  R )  /\  y  e.  ( Base `  A
) )  ->  (
x ( .s `  A ) y )  =  ( ( ( N  X.  N )  X.  { x }
)  oF ( .r `  R ) y ) )
2818, 23, 27syl2anc 661 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( x
( .s `  A
) y )  =  ( ( ( N  X.  N )  X. 
{ x } )  oF ( .r
`  R ) y ) )
2928oveq1d 6111 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( (
x ( .s `  A ) y ) ( R maMul  <. N ,  N ,  N >. ) z )  =  ( ( ( ( N  X.  N )  X. 
{ x } )  oF ( .r
`  R ) y ) ( R maMul  <. N ,  N ,  N >. ) z ) )
302, 15, 7, 16, 16, 16, 19, 20mamucl 18306 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( y
( R maMul  <. N ,  N ,  N >. ) z )  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
3130, 22eleqtrd 2519 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( y
( R maMul  <. N ,  N ,  N >. ) z )  e.  (
Base `  A )
)
321, 24, 2, 25, 17, 26matvsca2 18333 . . . 4  |-  ( ( x  e.  ( Base `  R )  /\  (
y ( R maMul  <. N ,  N ,  N >. ) z )  e.  (
Base `  A )
)  ->  ( x
( .s `  A
) ( y ( R maMul  <. N ,  N ,  N >. ) z ) )  =  ( ( ( N  X.  N
)  X.  { x } )  oF ( .r `  R
) ( y ( R maMul  <. N ,  N ,  N >. ) z ) ) )
3318, 31, 32syl2anc 661 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( x
( .s `  A
) ( y ( R maMul  <. N ,  N ,  N >. ) z ) )  =  ( ( ( N  X.  N
)  X.  { x } )  oF ( .r `  R
) ( y ( R maMul  <. N ,  N ,  N >. ) z ) ) )
3421, 29, 333eqtr4d 2485 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( (
x ( .s `  A ) y ) ( R maMul  <. N ,  N ,  N >. ) z )  =  ( x ( .s `  A ) ( y ( R maMul  <. N ,  N ,  N >. ) z ) ) )
35 simplr 754 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  R  e.  CRing
)
3635, 2, 17, 7, 16, 16, 16, 19, 18, 20mamuvs2 18315 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( y
( R maMul  <. N ,  N ,  N >. ) ( ( ( N  X.  N )  X. 
{ x } )  oF ( .r
`  R ) z ) )  =  ( ( ( N  X.  N )  X.  {
x } )  oF ( .r `  R ) ( y ( R maMul  <. N ,  N ,  N >. ) z ) ) )
3720, 22eleqtrd 2519 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  z  e.  ( Base `  A )
)
381, 24, 2, 25, 17, 26matvsca2 18333 . . . . 5  |-  ( ( x  e.  ( Base `  R )  /\  z  e.  ( Base `  A
) )  ->  (
x ( .s `  A ) z )  =  ( ( ( N  X.  N )  X.  { x }
)  oF ( .r `  R ) z ) )
3918, 37, 38syl2anc 661 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( x
( .s `  A
) z )  =  ( ( ( N  X.  N )  X. 
{ x } )  oF ( .r
`  R ) z ) )
4039oveq2d 6112 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( y
( R maMul  <. N ,  N ,  N >. ) ( x ( .s
`  A ) z ) )  =  ( y ( R maMul  <. N ,  N ,  N >. ) ( ( ( N  X.  N )  X. 
{ x } )  oF ( .r
`  R ) z ) ) )
4136, 40, 333eqtr4d 2485 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  CRing )  /\  ( x  e.  ( Base `  R )  /\  y  e.  ( ( Base `  R )  ^m  ( N  X.  N
) )  /\  z  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) ) )  ->  ( y
( R maMul  <. N ,  N ,  N >. ) ( x ( .s
`  A ) z ) )  =  ( x ( .s `  A ) ( y ( R maMul  <. N ,  N ,  N >. ) z ) ) )
423, 4, 5, 6, 8, 11, 13, 14, 34, 41isassad 17399 1  |-  ( ( N  e.  Fin  /\  R  e.  CRing )  ->  A  e. AssAlg )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   {csn 3882   <.cotp 3890    X. cxp 4843   ` cfv 5423  (class class class)co 6096    oFcof 6323    ^m cmap 7219   Fincfn 7315   Basecbs 14179   .rcmulr 14244   .scvsca 14247   Ringcrg 16650   CRingccrg 16651   LModclmod 16953  AssAlgcasa 17386   maMul cmmul 18284   Mat cmat 18285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-inf2 7852  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-ot 3891  df-uni 4097  df-int 4134  df-iun 4178  df-iin 4179  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-ixp 7269  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-sup 7696  df-oi 7729  df-card 8114  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-3 10386  df-4 10387  df-5 10388  df-6 10389  df-7 10390  df-8 10391  df-9 10392  df-10 10393  df-n0 10585  df-z 10652  df-dec 10761  df-uz 10867  df-fz 11443  df-fzo 11554  df-seq 11812  df-hash 12109  df-struct 14181  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-ress 14186  df-plusg 14256  df-mulr 14257  df-sca 14259  df-vsca 14260  df-ip 14261  df-tset 14262  df-ple 14263  df-ds 14265  df-hom 14267  df-cco 14268  df-0g 14385  df-gsum 14386  df-prds 14391  df-pws 14393  df-mre 14529  df-mrc 14530  df-acs 14532  df-mnd 15420  df-mhm 15469  df-submnd 15470  df-grp 15550  df-minusg 15551  df-sbg 15552  df-mulg 15553  df-subg 15683  df-ghm 15750  df-cntz 15840  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-cring 16653  df-subrg 16868  df-lmod 16955  df-lss 17019  df-sra 17258  df-rgmod 17259  df-assa 17389  df-dsmm 18162  df-frlm 18177  df-mamu 18286  df-mat 18287
This theorem is referenced by:  matinv  18488
  Copyright terms: Public domain W3C validator