MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem4 Structured version   Visualization version   Unicode version

Theorem marypha2lem4 7970
Description: Lemma for marypha2 7971. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t  |-  T  = 
U_ x  e.  A  ( { x }  X.  ( F `  x ) )
Assertion
Ref Expression
marypha2lem4  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( T " X
)  =  U. ( F " X ) )
Distinct variable groups:    x, A    x, F    x, X
Allowed substitution hint:    T( x)

Proof of Theorem marypha2lem4
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 marypha2lem.t . . . . . 6  |-  T  = 
U_ x  e.  A  ( { x }  X.  ( F `  x ) )
21marypha2lem2 7968 . . . . 5  |-  T  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
32imaeq1i 5171 . . . 4  |-  ( T
" X )  =  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }
" X )
4 df-ima 4852 . . . 4  |-  ( {
<. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) } " X )  =  ran  ( { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }  |`  X )
53, 4eqtri 2493 . . 3  |-  ( T
" X )  =  ran  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  |`  X )
6 resopab2 5159 . . . . . 6  |-  ( X 
C_  A  ->  ( { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }  |`  X )  =  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  ( F `  x ) ) } )
76adantl 473 . . . . 5  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  |`  X )  =  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  ( F `  x
) ) } )
87rneqd 5068 . . . 4  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  ran  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  |`  X )  =  ran  {
<. x ,  y >.  |  ( x  e.  X  /\  y  e.  ( F `  x
) ) } )
9 rnopab 5085 . . . . 5  |-  ran  { <. x ,  y >.  |  ( x  e.  X  /\  y  e.  ( F `  x
) ) }  =  { y  |  E. x ( x  e.  X  /\  y  e.  ( F `  x
) ) }
10 df-rex 2762 . . . . . . . . 9  |-  ( E. x  e.  X  y  e.  ( F `  x )  <->  E. x
( x  e.  X  /\  y  e.  ( F `  x )
) )
1110bicomi 207 . . . . . . . 8  |-  ( E. x ( x  e.  X  /\  y  e.  ( F `  x
) )  <->  E. x  e.  X  y  e.  ( F `  x ) )
1211abbii 2587 . . . . . . 7  |-  { y  |  E. x ( x  e.  X  /\  y  e.  ( F `  x ) ) }  =  { y  |  E. x  e.  X  y  e.  ( F `  x ) }
13 df-iun 4271 . . . . . . 7  |-  U_ x  e.  X  ( F `  x )  =  {
y  |  E. x  e.  X  y  e.  ( F `  x ) }
1412, 13eqtr4i 2496 . . . . . 6  |-  { y  |  E. x ( x  e.  X  /\  y  e.  ( F `  x ) ) }  =  U_ x  e.  X  ( F `  x )
1514a1i 11 . . . . 5  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  { y  |  E. x ( x  e.  X  /\  y  e.  ( F `  x
) ) }  =  U_ x  e.  X  ( F `  x ) )
169, 15syl5eq 2517 . . . 4  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  ran  { <. x ,  y
>.  |  ( x  e.  X  /\  y  e.  ( F `  x
) ) }  =  U_ x  e.  X  ( F `  x ) )
178, 16eqtrd 2505 . . 3  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  ran  ( { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }  |`  X )  =  U_ x  e.  X  ( F `  x )
)
185, 17syl5eq 2517 . 2  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( T " X
)  =  U_ x  e.  X  ( F `  x ) )
19 fnfun 5683 . . . 4  |-  ( F  Fn  A  ->  Fun  F )
2019adantr 472 . . 3  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  Fun  F )
21 funiunfv 6171 . . 3  |-  ( Fun 
F  ->  U_ x  e.  X  ( F `  x )  =  U. ( F " X ) )
2220, 21syl 17 . 2  |-  ( ( F  Fn  A  /\  X  C_  A )  ->  U_ x  e.  X  ( F `  x )  =  U. ( F
" X ) )
2318, 22eqtrd 2505 1  |-  ( ( F  Fn  A  /\  X  C_  A )  -> 
( T " X
)  =  U. ( F " X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904   {cab 2457   E.wrex 2757    C_ wss 3390   {csn 3959   U.cuni 4190   U_ciun 4269   {copab 4453    X. cxp 4837   ran crn 4840    |` cres 4841   "cima 4842   Fun wfun 5583    Fn wfn 5584   ` cfv 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-fv 5597
This theorem is referenced by:  marypha2  7971
  Copyright terms: Public domain W3C validator