MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marypha2lem2 Structured version   Unicode version

Theorem marypha2lem2 7888
Description: Lemma for marypha2 7891. Properties of the used relation. (Contributed by Stefan O'Rear, 20-Feb-2015.)
Hypothesis
Ref Expression
marypha2lem.t  |-  T  = 
U_ x  e.  A  ( { x }  X.  ( F `  x ) )
Assertion
Ref Expression
marypha2lem2  |-  T  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
Distinct variable groups:    x, A, y    x, F, y
Allowed substitution hints:    T( x, y)

Proof of Theorem marypha2lem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 marypha2lem.t . 2  |-  T  = 
U_ x  e.  A  ( { x }  X.  ( F `  x ) )
2 sneq 4026 . . . 4  |-  ( x  =  z  ->  { x }  =  { z } )
3 fveq2 5848 . . . 4  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
42, 3xpeq12d 5013 . . 3  |-  ( x  =  z  ->  ( { x }  X.  ( F `  x ) )  =  ( { z }  X.  ( F `  z )
) )
54cbviunv 4354 . 2  |-  U_ x  e.  A  ( {
x }  X.  ( F `  x )
)  =  U_ z  e.  A  ( {
z }  X.  ( F `  z )
)
6 df-xp 4994 . . . . 5  |-  ( { z }  X.  ( F `  z )
)  =  { <. x ,  y >.  |  ( x  e.  { z }  /\  y  e.  ( F `  z
) ) }
76a1i 11 . . . 4  |-  ( z  e.  A  ->  ( { z }  X.  ( F `  z ) )  =  { <. x ,  y >.  |  ( x  e.  { z }  /\  y  e.  ( F `  z
) ) } )
87iuneq2i 4334 . . 3  |-  U_ z  e.  A  ( {
z }  X.  ( F `  z )
)  =  U_ z  e.  A  { <. x ,  y >.  |  ( x  e.  { z }  /\  y  e.  ( F `  z
) ) }
9 iunopab 4772 . . 3  |-  U_ z  e.  A  { <. x ,  y >.  |  ( x  e.  { z }  /\  y  e.  ( F `  z
) ) }  =  { <. x ,  y
>.  |  E. z  e.  A  ( x  e.  { z }  /\  y  e.  ( F `  z ) ) }
10 elsn 4030 . . . . . . . 8  |-  ( x  e.  { z }  <-> 
x  =  z )
11 equcom 1799 . . . . . . . 8  |-  ( x  =  z  <->  z  =  x )
1210, 11bitri 249 . . . . . . 7  |-  ( x  e.  { z }  <-> 
z  =  x )
1312anbi1i 693 . . . . . 6  |-  ( ( x  e.  { z }  /\  y  e.  ( F `  z
) )  <->  ( z  =  x  /\  y  e.  ( F `  z
) ) )
1413rexbii 2956 . . . . 5  |-  ( E. z  e.  A  ( x  e.  { z }  /\  y  e.  ( F `  z
) )  <->  E. z  e.  A  ( z  =  x  /\  y  e.  ( F `  z
) ) )
15 fveq2 5848 . . . . . . 7  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
1615eleq2d 2524 . . . . . 6  |-  ( z  =  x  ->  (
y  e.  ( F `
 z )  <->  y  e.  ( F `  x ) ) )
1716ceqsrexbv 3231 . . . . 5  |-  ( E. z  e.  A  ( z  =  x  /\  y  e.  ( F `  z ) )  <->  ( x  e.  A  /\  y  e.  ( F `  x
) ) )
1814, 17bitri 249 . . . 4  |-  ( E. z  e.  A  ( x  e.  { z }  /\  y  e.  ( F `  z
) )  <->  ( x  e.  A  /\  y  e.  ( F `  x
) ) )
1918opabbii 4503 . . 3  |-  { <. x ,  y >.  |  E. z  e.  A  (
x  e.  { z }  /\  y  e.  ( F `  z
) ) }  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
208, 9, 193eqtri 2487 . 2  |-  U_ z  e.  A  ( {
z }  X.  ( F `  z )
)  =  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  ( F `  x ) ) }
211, 5, 203eqtri 2487 1  |-  T  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  ( F `  x
) ) }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 367    = wceq 1398    e. wcel 1823   E.wrex 2805   {csn 4016   U_ciun 4315   {copab 4496    X. cxp 4986   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-xp 4994  df-iota 5534  df-fv 5578
This theorem is referenced by:  marypha2lem3  7889  marypha2lem4  7890  eulerpartlemgu  28580
  Copyright terms: Public domain W3C validator