MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepval Structured version   Unicode version

Theorem marrepval 18503
Description: Third substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.)
Hypotheses
Ref Expression
marrepfval.a  |-  A  =  ( N Mat  R )
marrepfval.b  |-  B  =  ( Base `  A
)
marrepfval.q  |-  Q  =  ( N matRRep  R )
marrepfval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
marrepval  |-  ( ( ( M  e.  B  /\  S  e.  ( Base `  R ) )  /\  ( K  e.  N  /\  L  e.  N ) )  -> 
( K ( M Q S ) L )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  S ,  .0.  ) ,  ( i M j ) ) ) )
Distinct variable groups:    i, N, j    R, i, j    i, M, j    S, i, j   
i, K, j    i, L, j
Allowed substitution hints:    A( i, j)    B( i, j)    Q( i, j)    .0. ( i, j)

Proof of Theorem marrepval
Dummy variables  k 
l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.a . . . 4  |-  A  =  ( N Mat  R )
2 marrepfval.b . . . 4  |-  B  =  ( Base `  A
)
3 marrepfval.q . . . 4  |-  Q  =  ( N matRRep  R )
4 marrepfval.z . . . 4  |-  .0.  =  ( 0g `  R )
51, 2, 3, 4marrepval0 18502 . . 3  |-  ( ( M  e.  B  /\  S  e.  ( Base `  R ) )  -> 
( M Q S )  =  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  S ,  .0.  ) ,  ( i M j ) ) ) ) )
65adantr 465 . 2  |-  ( ( ( M  e.  B  /\  S  e.  ( Base `  R ) )  /\  ( K  e.  N  /\  L  e.  N ) )  -> 
( M Q S )  =  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  S ,  .0.  ) ,  ( i M j ) ) ) ) )
7 simprl 755 . . 3  |-  ( ( ( M  e.  B  /\  S  e.  ( Base `  R ) )  /\  ( K  e.  N  /\  L  e.  N ) )  ->  K  e.  N )
8 simplrr 760 . . 3  |-  ( ( ( ( M  e.  B  /\  S  e.  ( Base `  R
) )  /\  ( K  e.  N  /\  L  e.  N )
)  /\  k  =  K )  ->  L  e.  N )
91, 2matrcl 18440 . . . . . . 7  |-  ( M  e.  B  ->  ( N  e.  Fin  /\  R  e.  _V ) )
109simpld 459 . . . . . 6  |-  ( M  e.  B  ->  N  e.  Fin )
1110, 10jca 532 . . . . 5  |-  ( M  e.  B  ->  ( N  e.  Fin  /\  N  e.  Fin ) )
1211ad3antrrr 729 . . . 4  |-  ( ( ( ( M  e.  B  /\  S  e.  ( Base `  R
) )  /\  ( K  e.  N  /\  L  e.  N )
)  /\  ( k  =  K  /\  l  =  L ) )  -> 
( N  e.  Fin  /\  N  e.  Fin )
)
13 mpt2exga 6762 . . . 4  |-  ( ( N  e.  Fin  /\  N  e.  Fin )  ->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  S ,  .0.  ) ,  ( i M j ) ) )  e.  _V )
1412, 13syl 16 . . 3  |-  ( ( ( ( M  e.  B  /\  S  e.  ( Base `  R
) )  /\  ( K  e.  N  /\  L  e.  N )
)  /\  ( k  =  K  /\  l  =  L ) )  -> 
( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  S ,  .0.  ) ,  ( i M j ) ) )  e.  _V )
15 eqeq2 2469 . . . . . . 7  |-  ( k  =  K  ->  (
i  =  k  <->  i  =  K ) )
1615adantr 465 . . . . . 6  |-  ( ( k  =  K  /\  l  =  L )  ->  ( i  =  k  <-> 
i  =  K ) )
17 eqeq2 2469 . . . . . . . 8  |-  ( l  =  L  ->  (
j  =  l  <->  j  =  L ) )
1817ifbid 3922 . . . . . . 7  |-  ( l  =  L  ->  if ( j  =  l ,  S ,  .0.  )  =  if (
j  =  L ,  S ,  .0.  )
)
1918adantl 466 . . . . . 6  |-  ( ( k  =  K  /\  l  =  L )  ->  if ( j  =  l ,  S ,  .0.  )  =  if ( j  =  L ,  S ,  .0.  ) )
2016, 19ifbieq1d 3923 . . . . 5  |-  ( ( k  =  K  /\  l  =  L )  ->  if ( i  =  k ,  if ( j  =  l ,  S ,  .0.  ) ,  ( i M j ) )  =  if ( i  =  K ,  if ( j  =  L ,  S ,  .0.  ) ,  ( i M j ) ) )
2120mpt2eq3dv 6264 . . . 4  |-  ( ( k  =  K  /\  l  =  L )  ->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  S ,  .0.  ) ,  ( i M j ) ) )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  S ,  .0.  ) ,  ( i M j ) ) ) )
2221adantl 466 . . 3  |-  ( ( ( ( M  e.  B  /\  S  e.  ( Base `  R
) )  /\  ( K  e.  N  /\  L  e.  N )
)  /\  ( k  =  K  /\  l  =  L ) )  -> 
( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  S ,  .0.  ) ,  ( i M j ) ) )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  S ,  .0.  ) ,  ( i M j ) ) ) )
237, 8, 14, 22ovmpt2dv2 6337 . 2  |-  ( ( ( M  e.  B  /\  S  e.  ( Base `  R ) )  /\  ( K  e.  N  /\  L  e.  N ) )  -> 
( ( M Q S )  =  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  S ,  .0.  ) ,  ( i M j ) ) ) )  -> 
( K ( M Q S ) L )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  S ,  .0.  ) ,  ( i M j ) ) ) ) )
246, 23mpd 15 1  |-  ( ( ( M  e.  B  /\  S  e.  ( Base `  R ) )  /\  ( K  e.  N  /\  L  e.  N ) )  -> 
( K ( M Q S ) L )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  K ,  if ( j  =  L ,  S ,  .0.  ) ,  ( i M j ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078   ifcif 3902   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205   Fincfn 7423   Basecbs 14295   0gc0g 14500   Mat cmat 18408   matRRep cmarrep 18497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-1st 6690  df-2nd 6691  df-slot 14299  df-base 14300  df-mat 18410  df-marrep 18499
This theorem is referenced by:  marrepeval  18504  marrepcl  18505  1marepvmarrepid  18516  smadiadetglem1  18612  smadiadetglem2  18613
  Copyright terms: Public domain W3C validator