MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  marrepfval Structured version   Unicode version

Theorem marrepfval 18845
Description: First substitution for the definition of the matrix row replacement function. (Contributed by AV, 12-Feb-2019.)
Hypotheses
Ref Expression
marrepfval.a  |-  A  =  ( N Mat  R )
marrepfval.b  |-  B  =  ( Base `  A
)
marrepfval.q  |-  Q  =  ( N matRRep  R )
marrepfval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
marrepfval  |-  Q  =  ( m  e.  B ,  s  e.  ( Base `  R )  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )
Distinct variable groups:    B, m, s    i, N, j, k, l, m, s    R, i, j, k, l, m, s
Allowed substitution hints:    A( i, j, k, m, s, l)    B( i, j, k, l)    Q( i, j, k, m, s, l)    .0. ( i,
j, k, m, s, l)

Proof of Theorem marrepfval
Dummy variables  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 marrepfval.q . 2  |-  Q  =  ( N matRRep  R )
2 marrepfval.b . . . . . 6  |-  B  =  ( Base `  A
)
3 fvex 5875 . . . . . 6  |-  ( Base `  A )  e.  _V
42, 3eqeltri 2551 . . . . 5  |-  B  e. 
_V
5 fvex 5875 . . . . . 6  |-  ( Base `  R )  e.  _V
65a1i 11 . . . . 5  |-  ( ( N  e.  _V  /\  R  e.  _V )  ->  ( Base `  R
)  e.  _V )
7 mpt2exga 6859 . . . . 5  |-  ( ( B  e.  _V  /\  ( Base `  R )  e.  _V )  ->  (
m  e.  B , 
s  e.  ( Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  e.  _V )
84, 6, 7sylancr 663 . . . 4  |-  ( ( N  e.  _V  /\  R  e.  _V )  ->  ( m  e.  B ,  s  e.  ( Base `  R )  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  e.  _V )
9 oveq12 6292 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  r )  =  ( N Mat  R
) )
109fveq2d 5869 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  ( Base `  ( N Mat  R ) ) )
11 marrepfval.a . . . . . . . . 9  |-  A  =  ( N Mat  R )
1211fveq2i 5868 . . . . . . . 8  |-  ( Base `  A )  =  (
Base `  ( N Mat  R ) )
132, 12eqtri 2496 . . . . . . 7  |-  B  =  ( Base `  ( N Mat  R ) )
1410, 13syl6eqr 2526 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  r ) )  =  B )
15 fveq2 5865 . . . . . . 7  |-  ( r  =  R  ->  ( Base `  r )  =  ( Base `  R
) )
1615adantl 466 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  r
)  =  ( Base `  R ) )
17 simpl 457 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  n  =  N )
18 fveq2 5865 . . . . . . . . . . . 12  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
19 marrepfval.z . . . . . . . . . . . 12  |-  .0.  =  ( 0g `  R )
2018, 19syl6eqr 2526 . . . . . . . . . . 11  |-  ( r  =  R  ->  ( 0g `  r )  =  .0.  )
2120ifeq2d 3958 . . . . . . . . . 10  |-  ( r  =  R  ->  if ( j  =  l ,  s ,  ( 0g `  r ) )  =  if ( j  =  l ,  s ,  .0.  )
)
2221ifeq1d 3957 . . . . . . . . 9  |-  ( r  =  R  ->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g `  r ) ) ,  ( i m j ) )  =  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) )
2322adantl 466 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g
`  r ) ) ,  ( i m j ) )  =  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) )
2417, 17, 23mpt2eq123dv 6342 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g
`  r ) ) ,  ( i m j ) ) )  =  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) )
2517, 17, 24mpt2eq123dv 6342 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g
`  r ) ) ,  ( i m j ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )
2614, 16, 25mpt2eq123dv 6342 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( m  e.  (
Base `  ( n Mat  r ) ) ,  s  e.  ( Base `  r )  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g `  r
) ) ,  ( i m j ) ) ) ) )  =  ( m  e.  B ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
27 df-marrep 18843 . . . . 5  |- matRRep  =  ( n  e.  _V , 
r  e.  _V  |->  ( m  e.  ( Base `  ( n Mat  r ) ) ,  s  e.  ( Base `  r
)  |->  ( k  e.  n ,  l  e.  n  |->  ( i  e.  n ,  j  e.  n  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  ( 0g `  r ) ) ,  ( i m j ) ) ) ) ) )
2826, 27ovmpt2ga 6415 . . . 4  |-  ( ( N  e.  _V  /\  R  e.  _V  /\  (
m  e.  B , 
s  e.  ( Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  e.  _V )  -> 
( N matRRep  R )  =  ( m  e.  B ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
298, 28mpd3an3 1325 . . 3  |-  ( ( N  e.  _V  /\  R  e.  _V )  ->  ( N matRRep  R )  =  ( m  e.  B ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
3027mpt2ndm0 6499 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N matRRep  R )  =  (/) )
31 mpt20 6350 . . . . 5  |-  ( m  e.  (/) ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) )  =  (/)
3230, 31syl6eqr 2526 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N matRRep  R )  =  ( m  e.  (/) ,  s  e.  (
Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) ) )
33 matbas0pc 18694 . . . . . 6  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( Base `  ( N Mat  R ) )  =  (/) )
3413, 33syl5eq 2520 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  B  =  (/) )
35 eqidd 2468 . . . . 5  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( Base `  R
)  =  ( Base `  R ) )
36 mpt2eq12 6340 . . . . 5  |-  ( ( B  =  (/)  /\  ( Base `  R )  =  ( Base `  R
) )  ->  (
m  e.  B , 
s  e.  ( Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  =  ( m  e.  (/) ,  s  e.  (
Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) ) )
3734, 35, 36syl2anc 661 . . . 4  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( m  e.  B ,  s  e.  ( Base `  R )  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )  =  ( m  e.  (/) ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
3832, 37eqtr4d 2511 . . 3  |-  ( -.  ( N  e.  _V  /\  R  e.  _V )  ->  ( N matRRep  R )  =  ( m  e.  B ,  s  e.  ( Base `  R
)  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i
m j ) ) ) ) ) )
3929, 38pm2.61i 164 . 2  |-  ( N matRRep  R )  =  ( m  e.  B , 
s  e.  ( Base `  R )  |->  ( k  e.  N ,  l  e.  N  |->  ( i  e.  N ,  j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )
401, 39eqtri 2496 1  |-  Q  =  ( m  e.  B ,  s  e.  ( Base `  R )  |->  ( k  e.  N , 
l  e.  N  |->  ( i  e.  N , 
j  e.  N  |->  if ( i  =  k ,  if ( j  =  l ,  s ,  .0.  ) ,  ( i m j ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113   (/)c0 3785   ifcif 3939   ` cfv 5587  (class class class)co 6283    |-> cmpt2 6285   Basecbs 14489   0gc0g 14694   Mat cmat 18692   matRRep cmarrep 18841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-1st 6784  df-2nd 6785  df-slot 14493  df-base 14494  df-mat 18693  df-marrep 18843
This theorem is referenced by:  marrepval0  18846
  Copyright terms: Public domain W3C validator