MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapunen Structured version   Unicode version

Theorem mapunen 7747
Description: Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of [Mendelson] p. 255. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapunen  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( C  ^m  ( A  u.  B
) )  ~~  (
( C  ^m  A
)  X.  ( C  ^m  B ) ) )

Proof of Theorem mapunen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6333 . . 3  |-  ( C  ^m  ( A  u.  B ) )  e. 
_V
21a1i 11 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( C  ^m  ( A  u.  B
) )  e.  _V )
3 ovex 6333 . . . 4  |-  ( C  ^m  A )  e. 
_V
4 ovex 6333 . . . 4  |-  ( C  ^m  B )  e. 
_V
53, 4xpex 6609 . . 3  |-  ( ( C  ^m  A )  X.  ( C  ^m  B ) )  e. 
_V
65a1i 11 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  e.  _V )
7 elmapi 7501 . . . . 5  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  x : ( A  u.  B ) --> C )
8 ssun1 3635 . . . . 5  |-  A  C_  ( A  u.  B
)
9 fssres 5766 . . . . 5  |-  ( ( x : ( A  u.  B ) --> C  /\  A  C_  ( A  u.  B )
)  ->  ( x  |`  A ) : A --> C )
107, 8, 9sylancl 666 . . . 4  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  (
x  |`  A ) : A --> C )
11 ssun2 3636 . . . . 5  |-  B  C_  ( A  u.  B
)
12 fssres 5766 . . . . 5  |-  ( ( x : ( A  u.  B ) --> C  /\  B  C_  ( A  u.  B )
)  ->  ( x  |`  B ) : B --> C )
137, 11, 12sylancl 666 . . . 4  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  (
x  |`  B ) : B --> C )
1410, 13jca 534 . . 3  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  (
( x  |`  A ) : A --> C  /\  ( x  |`  B ) : B --> C ) )
15 opelxp 4884 . . . 4  |-  ( <.
( x  |`  A ) ,  ( x  |`  B ) >.  e.  ( ( C  ^m  A
)  X.  ( C  ^m  B ) )  <-> 
( ( x  |`  A )  e.  ( C  ^m  A )  /\  ( x  |`  B )  e.  ( C  ^m  B ) ) )
16 simpl3 1010 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  C  e.  X
)
17 simpl1 1008 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  A  e.  V
)
1816, 17elmapd 7494 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( x  |`  A )  e.  ( C  ^m  A )  <-> 
( x  |`  A ) : A --> C ) )
19 simpl2 1009 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  B  e.  W
)
2016, 19elmapd 7494 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( x  |`  B )  e.  ( C  ^m  B )  <-> 
( x  |`  B ) : B --> C ) )
2118, 20anbi12d 715 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( ( x  |`  A )  e.  ( C  ^m  A
)  /\  ( x  |`  B )  e.  ( C  ^m  B ) )  <->  ( ( x  |`  A ) : A --> C  /\  ( x  |`  B ) : B --> C ) ) )
2215, 21syl5bb 260 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( <. (
x  |`  A ) ,  ( x  |`  B )
>.  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  <->  ( (
x  |`  A ) : A --> C  /\  (
x  |`  B ) : B --> C ) ) )
2314, 22syl5ibr 224 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( x  e.  ( C  ^m  ( A  u.  B )
)  ->  <. ( x  |`  A ) ,  ( x  |`  B ) >.  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )
24 xp1st 6837 . . . . . . 7  |-  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  ->  ( 1st `  y )  e.  ( C  ^m  A
) )
2524adantl 467 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( 1st `  y )  e.  ( C  ^m  A ) )
26 elmapi 7501 . . . . . 6  |-  ( ( 1st `  y )  e.  ( C  ^m  A )  ->  ( 1st `  y ) : A --> C )
2725, 26syl 17 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( 1st `  y ) : A --> C )
28 xp2nd 6838 . . . . . . 7  |-  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  ->  ( 2nd `  y )  e.  ( C  ^m  B
) )
2928adantl 467 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( 2nd `  y )  e.  ( C  ^m  B ) )
30 elmapi 7501 . . . . . 6  |-  ( ( 2nd `  y )  e.  ( C  ^m  B )  ->  ( 2nd `  y ) : B --> C )
3129, 30syl 17 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( 2nd `  y ) : B --> C )
32 simplr 760 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( A  i^i  B )  =  (/) )
33 fun2 5764 . . . . 5  |-  ( ( ( ( 1st `  y
) : A --> C  /\  ( 2nd `  y ) : B --> C )  /\  ( A  i^i  B )  =  (/) )  -> 
( ( 1st `  y
)  u.  ( 2nd `  y ) ) : ( A  u.  B
) --> C )
3427, 31, 32, 33syl21anc 1263 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( ( 1st `  y )  u.  ( 2nd `  y
) ) : ( A  u.  B ) --> C )
3534ex 435 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) )  ->  ( ( 1st `  y )  u.  ( 2nd `  y ) ) : ( A  u.  B ) --> C ) )
36 unexg 6606 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  u.  B
)  e.  _V )
3717, 19, 36syl2anc 665 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e.  _V )
3816, 37elmapd 7494 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  e.  ( C  ^m  ( A  u.  B ) )  <-> 
( ( 1st `  y
)  u.  ( 2nd `  y ) ) : ( A  u.  B
) --> C ) )
3935, 38sylibrd 237 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) )  ->  ( ( 1st `  y )  u.  ( 2nd `  y ) )  e.  ( C  ^m  ( A  u.  B
) ) ) )
40 1st2nd2 6844 . . . . . . 7  |-  ( y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
4140ad2antll 733 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
4227adantrl 720 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( 1st `  y
) : A --> C )
4331adantrl 720 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( 2nd `  y
) : B --> C )
44 res0 5129 . . . . . . . . . 10  |-  ( ( 1st `  y )  |`  (/) )  =  (/)
45 res0 5129 . . . . . . . . . 10  |-  ( ( 2nd `  y )  |`  (/) )  =  (/)
4644, 45eqtr4i 2461 . . . . . . . . 9  |-  ( ( 1st `  y )  |`  (/) )  =  ( ( 2nd `  y
)  |`  (/) )
47 simplr 760 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( A  i^i  B )  =  (/) )
4847reseq2d 5125 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( 1st `  y )  |`  ( A  i^i  B ) )  =  ( ( 1st `  y )  |`  (/) ) )
4947reseq2d 5125 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( 2nd `  y )  |`  ( A  i^i  B ) )  =  ( ( 2nd `  y )  |`  (/) ) )
5046, 48, 493eqtr4a 2496 . . . . . . . 8  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( 1st `  y )  |`  ( A  i^i  B ) )  =  ( ( 2nd `  y )  |`  ( A  i^i  B ) ) )
51 fresaunres1 5773 . . . . . . . 8  |-  ( ( ( 1st `  y
) : A --> C  /\  ( 2nd `  y ) : B --> C  /\  ( ( 1st `  y
)  |`  ( A  i^i  B ) )  =  ( ( 2nd `  y
)  |`  ( A  i^i  B ) ) )  -> 
( ( ( 1st `  y )  u.  ( 2nd `  y ) )  |`  A )  =  ( 1st `  y ) )
5242, 43, 50, 51syl3anc 1264 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  A )  =  ( 1st `  y
) )
53 fresaunres2 5772 . . . . . . . 8  |-  ( ( ( 1st `  y
) : A --> C  /\  ( 2nd `  y ) : B --> C  /\  ( ( 1st `  y
)  |`  ( A  i^i  B ) )  =  ( ( 2nd `  y
)  |`  ( A  i^i  B ) ) )  -> 
( ( ( 1st `  y )  u.  ( 2nd `  y ) )  |`  B )  =  ( 2nd `  y ) )
5442, 43, 50, 53syl3anc 1264 . . . . . . 7  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  B )  =  ( 2nd `  y
) )
5552, 54opeq12d 4198 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  <. ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  A ) ,  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  B )
>.  =  <. ( 1st `  y ) ,  ( 2nd `  y )
>. )
5641, 55eqtr4d 2473 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  y  =  <. ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  A ) ,  ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  B ) >. )
57 reseq1 5119 . . . . . . 7  |-  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  ->  ( x  |`  A )  =  ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  A ) )
58 reseq1 5119 . . . . . . 7  |-  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  ->  ( x  |`  B )  =  ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  B ) )
5957, 58opeq12d 4198 . . . . . 6  |-  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  ->  <. ( x  |`  A ) ,  ( x  |`  B ) >.  =  <. ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  A ) ,  ( ( ( 1st `  y )  u.  ( 2nd `  y
) )  |`  B )
>. )
6059eqeq2d 2443 . . . . 5  |-  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  ->  ( y  = 
<. ( x  |`  A ) ,  ( x  |`  B ) >.  <->  y  =  <. ( ( ( 1st `  y )  u.  ( 2nd `  y ) )  |`  A ) ,  ( ( ( 1st `  y
)  u.  ( 2nd `  y ) )  |`  B ) >. )
)
6156, 60syl5ibrcom 225 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( x  =  ( ( 1st `  y
)  u.  ( 2nd `  y ) )  -> 
y  =  <. (
x  |`  A ) ,  ( x  |`  B )
>. ) )
62 ffn 5746 . . . . . . . 8  |-  ( x : ( A  u.  B ) --> C  ->  x  Fn  ( A  u.  B ) )
63 fnresdm 5703 . . . . . . . 8  |-  ( x  Fn  ( A  u.  B )  ->  (
x  |`  ( A  u.  B ) )  =  x )
647, 62, 633syl 18 . . . . . . 7  |-  ( x  e.  ( C  ^m  ( A  u.  B
) )  ->  (
x  |`  ( A  u.  B ) )  =  x )
6564ad2antrl 732 . . . . . 6  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( x  |`  ( A  u.  B
) )  =  x )
6665eqcomd 2437 . . . . 5  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  x  =  ( x  |`  ( A  u.  B ) ) )
67 vex 3090 . . . . . . . . . 10  |-  x  e. 
_V
6867resex 5168 . . . . . . . . 9  |-  ( x  |`  A )  e.  _V
6967resex 5168 . . . . . . . . 9  |-  ( x  |`  B )  e.  _V
7068, 69op1std 6817 . . . . . . . 8  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( 1st `  y
)  =  ( x  |`  A ) )
7168, 69op2ndd 6818 . . . . . . . 8  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( 2nd `  y
)  =  ( x  |`  B ) )
7270, 71uneq12d 3627 . . . . . . 7  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( ( 1st `  y )  u.  ( 2nd `  y ) )  =  ( ( x  |`  A )  u.  (
x  |`  B ) ) )
73 resundi 5138 . . . . . . 7  |-  ( x  |`  ( A  u.  B
) )  =  ( ( x  |`  A )  u.  ( x  |`  B ) )
7472, 73syl6eqr 2488 . . . . . 6  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( ( 1st `  y )  u.  ( 2nd `  y ) )  =  ( x  |`  ( A  u.  B
) ) )
7574eqeq2d 2443 . . . . 5  |-  ( y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  ( x  =  ( ( 1st `  y
)  u.  ( 2nd `  y ) )  <->  x  =  ( x  |`  ( A  u.  B ) ) ) )
7666, 75syl5ibrcom 225 . . . 4  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( y  = 
<. ( x  |`  A ) ,  ( x  |`  B ) >.  ->  x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) ) ) )
7761, 76impbid 193 . . 3  |-  ( ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  /\  ( A  i^i  B )  =  (/) )  /\  (
x  e.  ( C  ^m  ( A  u.  B ) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B
) ) ) )  ->  ( x  =  ( ( 1st `  y
)  u.  ( 2nd `  y ) )  <->  y  =  <. ( x  |`  A ) ,  ( x  |`  B ) >. )
)
7877ex 435 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( ( x  e.  ( C  ^m  ( A  u.  B
) )  /\  y  e.  ( ( C  ^m  A )  X.  ( C  ^m  B ) ) )  ->  ( x  =  ( ( 1st `  y )  u.  ( 2nd `  y ) )  <-> 
y  =  <. (
x  |`  A ) ,  ( x  |`  B )
>. ) ) )
792, 6, 23, 39, 78en3d 7613 1  |-  ( ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X
)  /\  ( A  i^i  B )  =  (/) )  ->  ( C  ^m  ( A  u.  B
) )  ~~  (
( C  ^m  A
)  X.  ( C  ^m  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1870   _Vcvv 3087    u. cun 3440    i^i cin 3441    C_ wss 3442   (/)c0 3767   <.cop 4008   class class class wbr 4426    X. cxp 4852    |` cres 4856    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305   1stc1st 6805   2ndc2nd 6806    ^m cmap 7480    ~~ cen 7574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7482  df-en 7578
This theorem is referenced by:  map2xp  7748  mapdom2  7749  mapcdaen  8612  ackbij1lem5  8652  hashmap  12602
  Copyright terms: Public domain W3C validator