MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsnf1o3 Structured version   Unicode version

Theorem mapsnf1o3 7372
Description: Explicit bijection in the reverse of mapsnf1o2 7371. (Contributed by Stefan O'Rear, 24-Mar-2015.)
Hypotheses
Ref Expression
mapsncnv.s  |-  S  =  { X }
mapsncnv.b  |-  B  e. 
_V
mapsncnv.x  |-  X  e. 
_V
mapsnf1o3.f  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
Assertion
Ref Expression
mapsnf1o3  |-  F : B
-1-1-onto-> ( B  ^m  S )
Distinct variable groups:    y, B    y, S    y, X
Allowed substitution hint:    F( y)

Proof of Theorem mapsnf1o3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 mapsncnv.s . . . 4  |-  S  =  { X }
2 mapsncnv.b . . . 4  |-  B  e. 
_V
3 mapsncnv.x . . . 4  |-  X  e. 
_V
4 eqid 2454 . . . 4  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  =  ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
51, 2, 3, 4mapsnf1o2 7371 . . 3  |-  ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) ) : ( B  ^m  S ) -1-1-onto-> B
6 f1ocnv 5762 . . 3  |-  ( ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : ( B  ^m  S ) -1-1-onto-> B  ->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
75, 6ax-mp 5 . 2  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S )
8 mapsnf1o3.f . . . 4  |-  F  =  ( y  e.  B  |->  ( S  X.  {
y } ) )
91, 2, 3, 4mapsncnv 7370 . . . 4  |-  `' ( x  e.  ( B  ^m  S )  |->  ( x `  X ) )  =  ( y  e.  B  |->  ( S  X.  { y } ) )
108, 9eqtr4i 2486 . . 3  |-  F  =  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) )
11 f1oeq1 5741 . . 3  |-  ( F  =  `' ( x  e.  ( B  ^m  S )  |->  ( x `
 X ) )  ->  ( F : B
-1-1-onto-> ( B  ^m  S )  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) ) )
1210, 11ax-mp 5 . 2  |-  ( F : B -1-1-onto-> ( B  ^m  S
)  <->  `' ( x  e.  ( B  ^m  S
)  |->  ( x `  X ) ) : B -1-1-onto-> ( B  ^m  S
) )
137, 12mpbir 209 1  |-  F : B
-1-1-onto-> ( B  ^m  S )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1370    e. wcel 1758   _Vcvv 3078   {csn 3986    |-> cmpt 4459    X. cxp 4947   `'ccnv 4948   -1-1-onto->wf1o 5526   ` cfv 5527  (class class class)co 6201    ^m cmap 7325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-op 3993  df-uni 4201  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-id 4745  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-1st 6688  df-2nd 6689  df-map 7327
This theorem is referenced by:  coe1f2  17790  coe1add  17842  evls1rhmlem  17882  evl1sca  17894  pf1ind  17915  ismrer1  28886
  Copyright terms: Public domain W3C validator