MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsn Structured version   Unicode version

Theorem mapsn 7259
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
map0.1  |-  A  e. 
_V
map0.2  |-  B  e. 
_V
Assertion
Ref Expression
mapsn  |-  ( A  ^m  { B }
)  =  { f  |  E. y  e.  A  f  =  { <. B ,  y >. } }
Distinct variable groups:    y, f, A    B, f, y

Proof of Theorem mapsn
StepHypRef Expression
1 map0.1 . . . 4  |-  A  e. 
_V
2 snex 4538 . . . 4  |-  { B }  e.  _V
31, 2elmap 7246 . . 3  |-  ( f  e.  ( A  ^m  { B } )  <->  f : { B } --> A )
4 ffn 5564 . . . . . . . 8  |-  ( f : { B } --> A  ->  f  Fn  { B } )
5 map0.2 . . . . . . . . 9  |-  B  e. 
_V
65snid 3910 . . . . . . . 8  |-  B  e. 
{ B }
7 fneu 5520 . . . . . . . 8  |-  ( ( f  Fn  { B }  /\  B  e.  { B } )  ->  E! y  B f y )
84, 6, 7sylancl 662 . . . . . . 7  |-  ( f : { B } --> A  ->  E! y  B f y )
9 euabsn 3952 . . . . . . . 8  |-  ( E! y  B f y  <->  E. y { y  |  B f y }  =  { y } )
10 frel 5567 . . . . . . . . . . . 12  |-  ( f : { B } --> A  ->  Rel  f )
11 relimasn 5197 . . . . . . . . . . . 12  |-  ( Rel  f  ->  ( f " { B } )  =  { y  |  B f y } )
1210, 11syl 16 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  ( f " { B } )  =  { y  |  B
f y } )
13 imadmrn 5184 . . . . . . . . . . . 12  |-  ( f
" dom  f )  =  ran  f
14 fdm 5568 . . . . . . . . . . . . 13  |-  ( f : { B } --> A  ->  dom  f  =  { B } )
1514imaeq2d 5174 . . . . . . . . . . . 12  |-  ( f : { B } --> A  ->  ( f " dom  f )  =  ( f " { B } ) )
1613, 15syl5reqr 2490 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  ( f " { B } )  =  ran  f )
1712, 16eqtr3d 2477 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  { y  |  B f y }  =  ran  f )
1817eqeq1d 2451 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( { y  |  B f y }  =  { y }  <->  ran  f  =  {
y } ) )
1918exbidv 1680 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( E. y { y  |  B
f y }  =  { y }  <->  E. y ran  f  =  {
y } ) )
209, 19syl5bb 257 . . . . . . 7  |-  ( f : { B } --> A  ->  ( E! y  B f y  <->  E. y ran  f  =  {
y } ) )
218, 20mpbid 210 . . . . . 6  |-  ( f : { B } --> A  ->  E. y ran  f  =  { y } )
22 vex 2980 . . . . . . . . . . 11  |-  y  e. 
_V
2322snid 3910 . . . . . . . . . 10  |-  y  e. 
{ y }
24 eleq2 2504 . . . . . . . . . 10  |-  ( ran  f  =  { y }  ->  ( y  e.  ran  f  <->  y  e.  { y } ) )
2523, 24mpbiri 233 . . . . . . . . 9  |-  ( ran  f  =  { y }  ->  y  e.  ran  f )
26 frn 5570 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  ran  f  C_  A )
2726sseld 3360 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( y  e. 
ran  f  ->  y  e.  A ) )
2825, 27syl5 32 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  y  e.  A ) )
29 dffn4 5631 . . . . . . . . . . . 12  |-  ( f  Fn  { B }  <->  f : { B } -onto-> ran  f )
304, 29sylib 196 . . . . . . . . . . 11  |-  ( f : { B } --> A  ->  f : { B } -onto-> ran  f )
31 fof 5625 . . . . . . . . . . 11  |-  ( f : { B } -onto-> ran  f  ->  f : { B } --> ran  f
)
3230, 31syl 16 . . . . . . . . . 10  |-  ( f : { B } --> A  ->  f : { B } --> ran  f )
33 feq3 5549 . . . . . . . . . 10  |-  ( ran  f  =  { y }  ->  ( f : { B } --> ran  f  <->  f : { B } --> { y } ) )
3432, 33syl5ibcom 220 . . . . . . . . 9  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  f : { B } --> { y } ) )
355, 22fsn 5886 . . . . . . . . 9  |-  ( f : { B } --> { y }  <->  f  =  { <. B ,  y
>. } )
3634, 35syl6ib 226 . . . . . . . 8  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  f  =  { <. B , 
y >. } ) )
3728, 36jcad 533 . . . . . . 7  |-  ( f : { B } --> A  ->  ( ran  f  =  { y }  ->  ( y  e.  A  /\  f  =  { <. B , 
y >. } ) ) )
3837eximdv 1676 . . . . . 6  |-  ( f : { B } --> A  ->  ( E. y ran  f  =  {
y }  ->  E. y
( y  e.  A  /\  f  =  { <. B ,  y >. } ) ) )
3921, 38mpd 15 . . . . 5  |-  ( f : { B } --> A  ->  E. y ( y  e.  A  /\  f  =  { <. B ,  y
>. } ) )
40 df-rex 2726 . . . . 5  |-  ( E. y  e.  A  f  =  { <. B , 
y >. }  <->  E. y
( y  e.  A  /\  f  =  { <. B ,  y >. } ) )
4139, 40sylibr 212 . . . 4  |-  ( f : { B } --> A  ->  E. y  e.  A  f  =  { <. B , 
y >. } )
425, 22f1osn 5683 . . . . . . . . 9  |-  { <. B ,  y >. } : { B } -1-1-onto-> { y }
43 f1oeq1 5637 . . . . . . . . 9  |-  ( f  =  { <. B , 
y >. }  ->  (
f : { B }
-1-1-onto-> { y }  <->  { <. B , 
y >. } : { B } -1-1-onto-> { y } ) )
4442, 43mpbiri 233 . . . . . . . 8  |-  ( f  =  { <. B , 
y >. }  ->  f : { B } -1-1-onto-> { y } )
45 f1of 5646 . . . . . . . 8  |-  ( f : { B } -1-1-onto-> {
y }  ->  f : { B } --> { y } )
4644, 45syl 16 . . . . . . 7  |-  ( f  =  { <. B , 
y >. }  ->  f : { B } --> { y } )
47 snssi 4022 . . . . . . 7  |-  ( y  e.  A  ->  { y }  C_  A )
48 fss 5572 . . . . . . 7  |-  ( ( f : { B }
--> { y }  /\  { y }  C_  A
)  ->  f : { B } --> A )
4946, 47, 48syl2an 477 . . . . . 6  |-  ( ( f  =  { <. B ,  y >. }  /\  y  e.  A )  ->  f : { B }
--> A )
5049expcom 435 . . . . 5  |-  ( y  e.  A  ->  (
f  =  { <. B ,  y >. }  ->  f : { B } --> A ) )
5150rexlimiv 2840 . . . 4  |-  ( E. y  e.  A  f  =  { <. B , 
y >. }  ->  f : { B } --> A )
5241, 51impbii 188 . . 3  |-  ( f : { B } --> A 
<->  E. y  e.  A  f  =  { <. B , 
y >. } )
533, 52bitri 249 . 2  |-  ( f  e.  ( A  ^m  { B } )  <->  E. y  e.  A  f  =  { <. B ,  y
>. } )
5453abbi2i 2559 1  |-  ( A  ^m  { B }
)  =  { f  |  E. y  e.  A  f  =  { <. B ,  y >. } }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   E!weu 2253   {cab 2429   E.wrex 2721   _Vcvv 2977    C_ wss 3333   {csn 3882   <.cop 3888   class class class wbr 4297   dom cdm 4845   ran crn 4846   "cima 4848   Rel wrel 4850    Fn wfn 5418   -->wf 5419   -onto->wfo 5421   -1-1-onto->wf1o 5422  (class class class)co 6096    ^m cmap 7219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-map 7221
This theorem is referenced by:  mapsnen  7392
  Copyright terms: Public domain W3C validator