Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfien2OLD Structured version   Unicode version

Theorem mapfien2OLD 35404
Description: Equinumerousity relation for sets of finitely supported functions. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) Obsolete version of mapfien2 7902 as of 7-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
mapfien2OLD.s  |-  S  =  { x  e.  ( B  ^m  A )  |  ( `' x " ( _V  \  {  .0.  } ) )  e. 
Fin }
mapfien2OLD.t  |-  T  =  { x  e.  ( D  ^m  C )  |  ( `' x " ( _V  \  { W } ) )  e. 
Fin }
mapfien2OLD.ac  |-  ( ph  ->  A  ~~  C )
mapfien2OLD.bd  |-  ( ph  ->  B  ~~  D )
mapfien2OLD.z  |-  ( ph  ->  .0.  e.  B )
mapfien2OLD.w  |-  ( ph  ->  W  e.  D )
Assertion
Ref Expression
mapfien2OLD  |-  ( ph  ->  S  ~~  T )
Distinct variable groups:    x, A    x, B    x, C    x, D    x,  .0.    x, W
Allowed substitution hints:    ph( x)    S( x)    T( x)

Proof of Theorem mapfien2OLD
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapfien2OLD.z . . 3  |-  ( ph  ->  .0.  e.  B )
2 mapfien2OLD.w . . 3  |-  ( ph  ->  W  e.  D )
3 mapfien2OLD.bd . . 3  |-  ( ph  ->  B  ~~  D )
4 enfixsn 7664 . . 3  |-  ( (  .0.  e.  B  /\  W  e.  D  /\  B  ~~  D )  ->  E. y ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )
51, 2, 3, 4syl3anc 1230 . 2  |-  ( ph  ->  E. y ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )
6 mapfien2OLD.ac . . . . 5  |-  ( ph  ->  A  ~~  C )
7 bren 7563 . . . . 5  |-  ( A 
~~  C  <->  E. z 
z : A -1-1-onto-> C )
86, 7sylib 196 . . . 4  |-  ( ph  ->  E. z  z : A -1-1-onto-> C )
9 mapfien2OLD.s . . . . . . . . . 10  |-  S  =  { x  e.  ( B  ^m  A )  |  ( `' x " ( _V  \  {  .0.  } ) )  e. 
Fin }
10 eqid 2402 . . . . . . . . . 10  |-  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin }  =  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin }
11 eqid 2402 . . . . . . . . . 10  |-  ( y `
 .0.  )  =  ( y `  .0.  )
12 f1ocnv 5811 . . . . . . . . . . 11  |-  ( z : A -1-1-onto-> C  ->  `' z : C -1-1-onto-> A )
13123ad2ant2 1019 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  `' z : C -1-1-onto-> A )
14 simp3 999 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  y : B
-1-1-onto-> D )
1563ad2ant1 1018 . . . . . . . . . . 11  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  A  ~~  C )
16 relen 7559 . . . . . . . . . . . 12  |-  Rel  ~~
1716brrelexi 4864 . . . . . . . . . . 11  |-  ( A 
~~  C  ->  A  e.  _V )
1815, 17syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  A  e.  _V )
1933ad2ant1 1018 . . . . . . . . . . 11  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  B  ~~  D )
2016brrelexi 4864 . . . . . . . . . . 11  |-  ( B 
~~  D  ->  B  e.  _V )
2119, 20syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  B  e.  _V )
2216brrelex2i 4865 . . . . . . . . . . 11  |-  ( A 
~~  C  ->  C  e.  _V )
2315, 22syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  C  e.  _V )
2416brrelex2i 4865 . . . . . . . . . . 11  |-  ( B 
~~  D  ->  D  e.  _V )
2519, 24syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  D  e.  _V )
2613ad2ant1 1018 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  .0.  e.  B )
279, 10, 11, 13, 14, 18, 21, 23, 25, 26mapfienOLD 8170 . . . . . . . . 9  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  ( w  e.  S  |->  ( y  o.  ( w  o.  `' z ) ) ) : S -1-1-onto-> { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin } )
28 ovex 6306 . . . . . . . . . . . 12  |-  ( B  ^m  A )  e. 
_V
2928rabex 4545 . . . . . . . . . . 11  |-  { x  e.  ( B  ^m  A
)  |  ( `' x " ( _V 
\  {  .0.  }
) )  e.  Fin }  e.  _V
309, 29eqeltri 2486 . . . . . . . . . 10  |-  S  e. 
_V
3130f1oen 7574 . . . . . . . . 9  |-  ( ( w  e.  S  |->  ( y  o.  ( w  o.  `' z ) ) ) : S -1-1-onto-> {
x  e.  ( D  ^m  C )  |  ( `' x "
( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin }  ->  S  ~~  { x  e.  ( D  ^m  C )  |  ( `' x "
( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin } )
3227, 31syl 17 . . . . . . . 8  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  S  ~~  { x  e.  ( D  ^m  C )  |  ( `' x "
( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin } )
33323adant3r 1227 . . . . . . 7  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )  ->  S  ~~  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin } )
34 sneq 3982 . . . . . . . . . . . . . 14  |-  ( ( y `  .0.  )  =  W  ->  { ( y `  .0.  ) }  =  { W } )
3534difeq2d 3561 . . . . . . . . . . . . 13  |-  ( ( y `  .0.  )  =  W  ->  ( _V 
\  { ( y `
 .0.  ) } )  =  ( _V 
\  { W }
) )
3635imaeq2d 5157 . . . . . . . . . . . 12  |-  ( ( y `  .0.  )  =  W  ->  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  =  ( `' x " ( _V 
\  { W }
) ) )
3736eleq1d 2471 . . . . . . . . . . 11  |-  ( ( y `  .0.  )  =  W  ->  ( ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin  <->  ( `' x " ( _V 
\  { W }
) )  e.  Fin ) )
3837rabbidv 3051 . . . . . . . . . 10  |-  ( ( y `  .0.  )  =  W  ->  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin }  =  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { W }
) )  e.  Fin } )
39 mapfien2OLD.t . . . . . . . . . 10  |-  T  =  { x  e.  ( D  ^m  C )  |  ( `' x " ( _V  \  { W } ) )  e. 
Fin }
4038, 39syl6eqr 2461 . . . . . . . . 9  |-  ( ( y `  .0.  )  =  W  ->  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin }  =  T )
4140adantl 464 . . . . . . . 8  |-  ( ( y : B -1-1-onto-> D  /\  ( y `  .0.  )  =  W )  ->  { x  e.  ( D  ^m  C )  |  ( `' x " ( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin }  =  T
)
42413ad2ant3 1020 . . . . . . 7  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )  ->  { x  e.  ( D  ^m  C )  |  ( `' x "
( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin }  =  T
)
4333, 42breqtrd 4419 . . . . . 6  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )  ->  S  ~~  T )
44433exp 1196 . . . . 5  |-  ( ph  ->  ( z : A -1-1-onto-> C  ->  ( ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W )  ->  S  ~~  T ) ) )
4544exlimdv 1745 . . . 4  |-  ( ph  ->  ( E. z  z : A -1-1-onto-> C  ->  ( (
y : B -1-1-onto-> D  /\  ( y `  .0.  )  =  W )  ->  S  ~~  T ) ) )
468, 45mpd 15 . . 3  |-  ( ph  ->  ( ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W )  ->  S  ~~  T ) )
4746exlimdv 1745 . 2  |-  ( ph  ->  ( E. y ( y : B -1-1-onto-> D  /\  ( y `  .0.  )  =  W )  ->  S  ~~  T ) )
485, 47mpd 15 1  |-  ( ph  ->  S  ~~  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405   E.wex 1633    e. wcel 1842   {crab 2758   _Vcvv 3059    \ cdif 3411   {csn 3972   class class class wbr 4395    |-> cmpt 4453   `'ccnv 4822   "cima 4826    o. ccom 4827   -1-1-onto->wf1o 5568   ` cfv 5569  (class class class)co 6278    ^m cmap 7457    ~~ cen 7551   Fincfn 7554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2759  df-rex 2760  df-reu 2761  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-1o 7167  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-fin 7558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator