Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapfien2OLD Structured version   Unicode version

Theorem mapfien2OLD 30646
Description: Equinumerousity relation for sets of finitely supported functions. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) Obsolete version of mapfien2 7864 as of 7-Jul-2019. (New usage is discouraged.)
Hypotheses
Ref Expression
mapfien2OLD.s  |-  S  =  { x  e.  ( B  ^m  A )  |  ( `' x " ( _V  \  {  .0.  } ) )  e. 
Fin }
mapfien2OLD.t  |-  T  =  { x  e.  ( D  ^m  C )  |  ( `' x " ( _V  \  { W } ) )  e. 
Fin }
mapfien2OLD.ac  |-  ( ph  ->  A  ~~  C )
mapfien2OLD.bd  |-  ( ph  ->  B  ~~  D )
mapfien2OLD.z  |-  ( ph  ->  .0.  e.  B )
mapfien2OLD.w  |-  ( ph  ->  W  e.  D )
Assertion
Ref Expression
mapfien2OLD  |-  ( ph  ->  S  ~~  T )
Distinct variable groups:    x, A    x, B    x, C    x, D    x,  .0.    x, W
Allowed substitution hints:    ph( x)    S( x)    T( x)

Proof of Theorem mapfien2OLD
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapfien2OLD.z . . 3  |-  ( ph  ->  .0.  e.  B )
2 mapfien2OLD.w . . 3  |-  ( ph  ->  W  e.  D )
3 mapfien2OLD.bd . . 3  |-  ( ph  ->  B  ~~  D )
4 enfixsn 7623 . . 3  |-  ( (  .0.  e.  B  /\  W  e.  D  /\  B  ~~  D )  ->  E. y ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )
51, 2, 3, 4syl3anc 1228 . 2  |-  ( ph  ->  E. y ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )
6 mapfien2OLD.ac . . . . 5  |-  ( ph  ->  A  ~~  C )
7 bren 7522 . . . . 5  |-  ( A 
~~  C  <->  E. z 
z : A -1-1-onto-> C )
86, 7sylib 196 . . . 4  |-  ( ph  ->  E. z  z : A -1-1-onto-> C )
9 mapfien2OLD.s . . . . . . . . . 10  |-  S  =  { x  e.  ( B  ^m  A )  |  ( `' x " ( _V  \  {  .0.  } ) )  e. 
Fin }
10 eqid 2467 . . . . . . . . . 10  |-  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin }  =  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin }
11 eqid 2467 . . . . . . . . . 10  |-  ( y `
 .0.  )  =  ( y `  .0.  )
12 f1ocnv 5826 . . . . . . . . . . 11  |-  ( z : A -1-1-onto-> C  ->  `' z : C -1-1-onto-> A )
13123ad2ant2 1018 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  `' z : C -1-1-onto-> A )
14 simp3 998 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  y : B
-1-1-onto-> D )
1563ad2ant1 1017 . . . . . . . . . . 11  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  A  ~~  C )
16 relen 7518 . . . . . . . . . . . 12  |-  Rel  ~~
1716brrelexi 5039 . . . . . . . . . . 11  |-  ( A 
~~  C  ->  A  e.  _V )
1815, 17syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  A  e.  _V )
1933ad2ant1 1017 . . . . . . . . . . 11  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  B  ~~  D )
2016brrelexi 5039 . . . . . . . . . . 11  |-  ( B 
~~  D  ->  B  e.  _V )
2119, 20syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  B  e.  _V )
2216brrelex2i 5040 . . . . . . . . . . 11  |-  ( A 
~~  C  ->  C  e.  _V )
2315, 22syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  C  e.  _V )
2416brrelex2i 5040 . . . . . . . . . . 11  |-  ( B 
~~  D  ->  D  e.  _V )
2519, 24syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  D  e.  _V )
2613ad2ant1 1017 . . . . . . . . . 10  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  .0.  e.  B )
279, 10, 11, 13, 14, 18, 21, 23, 25, 26mapfienOLD 8134 . . . . . . . . 9  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  ( w  e.  S  |->  ( y  o.  ( w  o.  `' z ) ) ) : S -1-1-onto-> { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin } )
28 ovex 6307 . . . . . . . . . . . 12  |-  ( B  ^m  A )  e. 
_V
2928rabex 4598 . . . . . . . . . . 11  |-  { x  e.  ( B  ^m  A
)  |  ( `' x " ( _V 
\  {  .0.  }
) )  e.  Fin }  e.  _V
309, 29eqeltri 2551 . . . . . . . . . 10  |-  S  e. 
_V
3130f1oen 7533 . . . . . . . . 9  |-  ( ( w  e.  S  |->  ( y  o.  ( w  o.  `' z ) ) ) : S -1-1-onto-> {
x  e.  ( D  ^m  C )  |  ( `' x "
( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin }  ->  S  ~~  { x  e.  ( D  ^m  C )  |  ( `' x "
( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin } )
3227, 31syl 16 . . . . . . . 8  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  y : B -1-1-onto-> D
)  ->  S  ~~  { x  e.  ( D  ^m  C )  |  ( `' x "
( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin } )
33323adant3r 1225 . . . . . . 7  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )  ->  S  ~~  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin } )
34 sneq 4037 . . . . . . . . . . . . . 14  |-  ( ( y `  .0.  )  =  W  ->  { ( y `  .0.  ) }  =  { W } )
3534difeq2d 3622 . . . . . . . . . . . . 13  |-  ( ( y `  .0.  )  =  W  ->  ( _V 
\  { ( y `
 .0.  ) } )  =  ( _V 
\  { W }
) )
3635imaeq2d 5335 . . . . . . . . . . . 12  |-  ( ( y `  .0.  )  =  W  ->  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  =  ( `' x " ( _V 
\  { W }
) ) )
3736eleq1d 2536 . . . . . . . . . . 11  |-  ( ( y `  .0.  )  =  W  ->  ( ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin  <->  ( `' x " ( _V 
\  { W }
) )  e.  Fin ) )
3837rabbidv 3105 . . . . . . . . . 10  |-  ( ( y `  .0.  )  =  W  ->  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin }  =  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { W }
) )  e.  Fin } )
39 mapfien2OLD.t . . . . . . . . . 10  |-  T  =  { x  e.  ( D  ^m  C )  |  ( `' x " ( _V  \  { W } ) )  e. 
Fin }
4038, 39syl6eqr 2526 . . . . . . . . 9  |-  ( ( y `  .0.  )  =  W  ->  { x  e.  ( D  ^m  C
)  |  ( `' x " ( _V 
\  { ( y `
 .0.  ) } ) )  e.  Fin }  =  T )
4140adantl 466 . . . . . . . 8  |-  ( ( y : B -1-1-onto-> D  /\  ( y `  .0.  )  =  W )  ->  { x  e.  ( D  ^m  C )  |  ( `' x " ( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin }  =  T
)
42413ad2ant3 1019 . . . . . . 7  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )  ->  { x  e.  ( D  ^m  C )  |  ( `' x "
( _V  \  {
( y `  .0.  ) } ) )  e. 
Fin }  =  T
)
4333, 42breqtrd 4471 . . . . . 6  |-  ( (
ph  /\  z : A
-1-1-onto-> C  /\  ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W ) )  ->  S  ~~  T )
44433exp 1195 . . . . 5  |-  ( ph  ->  ( z : A -1-1-onto-> C  ->  ( ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W )  ->  S  ~~  T ) ) )
4544exlimdv 1700 . . . 4  |-  ( ph  ->  ( E. z  z : A -1-1-onto-> C  ->  ( (
y : B -1-1-onto-> D  /\  ( y `  .0.  )  =  W )  ->  S  ~~  T ) ) )
468, 45mpd 15 . . 3  |-  ( ph  ->  ( ( y : B -1-1-onto-> D  /\  ( y `
 .0.  )  =  W )  ->  S  ~~  T ) )
4746exlimdv 1700 . 2  |-  ( ph  ->  ( E. y ( y : B -1-1-onto-> D  /\  ( y `  .0.  )  =  W )  ->  S  ~~  T ) )
485, 47mpd 15 1  |-  ( ph  ->  S  ~~  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379   E.wex 1596    e. wcel 1767   {crab 2818   _Vcvv 3113    \ cdif 3473   {csn 4027   class class class wbr 4447    |-> cmpt 4505   `'ccnv 4998   "cima 5002    o. ccom 5003   -1-1-onto->wf1o 5585   ` cfv 5586  (class class class)co 6282    ^m cmap 7417    ~~ cen 7510   Fincfn 7513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-1o 7127  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-fin 7517
This theorem is referenced by:  frlmpwfi  30650
  Copyright terms: Public domain W3C validator