Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdvalc Structured version   Unicode version

Theorem mapdvalc 37058
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h  |-  H  =  ( LHyp `  K
)
mapdval.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdval.s  |-  S  =  ( LSubSp `  U )
mapdval.f  |-  F  =  (LFnl `  U )
mapdval.l  |-  L  =  (LKer `  U )
mapdval.o  |-  O  =  ( ( ocH `  K
) `  W )
mapdval.m  |-  M  =  ( (mapd `  K
) `  W )
mapdval.k  |-  ( ph  ->  ( K  e.  X  /\  W  e.  H
) )
mapdval.t  |-  ( ph  ->  T  e.  S )
mapdvalc.c  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
Assertion
Ref Expression
mapdvalc  |-  ( ph  ->  ( M `  T
)  =  { f  e.  C  |  ( O `  ( L `
 f ) ) 
C_  T } )
Distinct variable groups:    f, K    f, F    f, W    f,
g, F    g, L    g, O    T, f    ph, f
Allowed substitution hints:    ph( g)    C( f, g)    S( f, g)    T( g)    U( f, g)    H( f, g)    K( g)    L( f)    M( f, g)    O( f)    W( g)    X( f, g)

Proof of Theorem mapdvalc
StepHypRef Expression
1 mapdval.h . . 3  |-  H  =  ( LHyp `  K
)
2 mapdval.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 mapdval.s . . 3  |-  S  =  ( LSubSp `  U )
4 mapdval.f . . 3  |-  F  =  (LFnl `  U )
5 mapdval.l . . 3  |-  L  =  (LKer `  U )
6 mapdval.o . . 3  |-  O  =  ( ( ocH `  K
) `  W )
7 mapdval.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
8 mapdval.k . . 3  |-  ( ph  ->  ( K  e.  X  /\  W  e.  H
) )
9 mapdval.t . . 3  |-  ( ph  ->  T  e.  S )
101, 2, 3, 4, 5, 6, 7, 8, 9mapdval 37057 . 2  |-  ( ph  ->  ( M `  T
)  =  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  T ) } )
11 anass 649 . . . 4  |-  ( ( ( f  e.  F  /\  ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  ( O `  ( L `
 f ) ) 
C_  T )  <->  ( f  e.  F  /\  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  T ) ) )
12 mapdvalc.c . . . . . . . 8  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
1312lcfl1lem 36920 . . . . . . 7  |-  ( f  e.  C  <->  ( f  e.  F  /\  ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
) ) )
1413anbi1i 695 . . . . . 6  |-  ( ( f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  T )  <->  ( (
f  e.  F  /\  ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f ) )  /\  ( O `  ( L `
 f ) ) 
C_  T ) )
1514bicomi 202 . . . . 5  |-  ( ( ( f  e.  F  /\  ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  ( O `  ( L `
 f ) ) 
C_  T )  <->  ( f  e.  C  /\  ( O `  ( L `  f ) )  C_  T ) )
1615a1i 11 . . . 4  |-  ( ph  ->  ( ( ( f  e.  F  /\  ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
) )  /\  ( O `  ( L `  f ) )  C_  T )  <->  ( f  e.  C  /\  ( O `  ( L `  f ) )  C_  T ) ) )
1711, 16syl5bbr 259 . . 3  |-  ( ph  ->  ( ( f  e.  F  /\  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  T ) )  <->  ( f  e.  C  /\  ( O `  ( L `  f ) )  C_  T ) ) )
1817rabbidva2 3083 . 2  |-  ( ph  ->  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  T ) }  =  { f  e.  C  |  ( O `  ( L `  f ) )  C_  T } )
1910, 18eqtrd 2482 1  |-  ( ph  ->  ( M `  T
)  =  { f  e.  C  |  ( O `  ( L `
 f ) ) 
C_  T } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1381    e. wcel 1802   {crab 2795    C_ wss 3458   ` cfv 5574   LSubSpclss 17446  LFnlclfn 34484  LKerclk 34512   LHypclh 35410   DVecHcdvh 36507   ocHcoch 36776  mapdcmpd 37053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pr 4672
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-if 3923  df-sn 4011  df-pr 4013  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-id 4781  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-mapd 37054
This theorem is referenced by:  mapdval2N  37059  mapdordlem2  37066  mapdrval  37076
  Copyright terms: Public domain W3C validator