Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdvalc Structured version   Unicode version

Theorem mapdvalc 37769
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 27-Jan-2015.)
Hypotheses
Ref Expression
mapdval.h  |-  H  =  ( LHyp `  K
)
mapdval.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdval.s  |-  S  =  ( LSubSp `  U )
mapdval.f  |-  F  =  (LFnl `  U )
mapdval.l  |-  L  =  (LKer `  U )
mapdval.o  |-  O  =  ( ( ocH `  K
) `  W )
mapdval.m  |-  M  =  ( (mapd `  K
) `  W )
mapdval.k  |-  ( ph  ->  ( K  e.  X  /\  W  e.  H
) )
mapdval.t  |-  ( ph  ->  T  e.  S )
mapdvalc.c  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
Assertion
Ref Expression
mapdvalc  |-  ( ph  ->  ( M `  T
)  =  { f  e.  C  |  ( O `  ( L `
 f ) ) 
C_  T } )
Distinct variable groups:    f, K    f, F    f, W    f,
g, F    g, L    g, O    T, f    ph, f
Allowed substitution hints:    ph( g)    C( f, g)    S( f, g)    T( g)    U( f, g)    H( f, g)    K( g)    L( f)    M( f, g)    O( f)    W( g)    X( f, g)

Proof of Theorem mapdvalc
StepHypRef Expression
1 mapdval.h . . 3  |-  H  =  ( LHyp `  K
)
2 mapdval.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 mapdval.s . . 3  |-  S  =  ( LSubSp `  U )
4 mapdval.f . . 3  |-  F  =  (LFnl `  U )
5 mapdval.l . . 3  |-  L  =  (LKer `  U )
6 mapdval.o . . 3  |-  O  =  ( ( ocH `  K
) `  W )
7 mapdval.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
8 mapdval.k . . 3  |-  ( ph  ->  ( K  e.  X  /\  W  e.  H
) )
9 mapdval.t . . 3  |-  ( ph  ->  T  e.  S )
101, 2, 3, 4, 5, 6, 7, 8, 9mapdval 37768 . 2  |-  ( ph  ->  ( M `  T
)  =  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  T ) } )
11 anass 647 . . . 4  |-  ( ( ( f  e.  F  /\  ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  ( O `  ( L `
 f ) ) 
C_  T )  <->  ( f  e.  F  /\  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  T ) ) )
12 mapdvalc.c . . . . . . . 8  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
1312lcfl1lem 37631 . . . . . . 7  |-  ( f  e.  C  <->  ( f  e.  F  /\  ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
) ) )
1413anbi1i 693 . . . . . 6  |-  ( ( f  e.  C  /\  ( O `  ( L `
 f ) ) 
C_  T )  <->  ( (
f  e.  F  /\  ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f ) )  /\  ( O `  ( L `
 f ) ) 
C_  T ) )
1514bicomi 202 . . . . 5  |-  ( ( ( f  e.  F  /\  ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  ( O `  ( L `
 f ) ) 
C_  T )  <->  ( f  e.  C  /\  ( O `  ( L `  f ) )  C_  T ) )
1615a1i 11 . . . 4  |-  ( ph  ->  ( ( ( f  e.  F  /\  ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
) )  /\  ( O `  ( L `  f ) )  C_  T )  <->  ( f  e.  C  /\  ( O `  ( L `  f ) )  C_  T ) ) )
1711, 16syl5bbr 259 . . 3  |-  ( ph  ->  ( ( f  e.  F  /\  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  T ) )  <->  ( f  e.  C  /\  ( O `  ( L `  f ) )  C_  T ) ) )
1817rabbidva2 3024 . 2  |-  ( ph  ->  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  T ) }  =  { f  e.  C  |  ( O `  ( L `  f ) )  C_  T } )
1910, 18eqtrd 2423 1  |-  ( ph  ->  ( M `  T
)  =  { f  e.  C  |  ( O `  ( L `
 f ) ) 
C_  T } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826   {crab 2736    C_ wss 3389   ` cfv 5496   LSubSpclss 17691  LFnlclfn 35195  LKerclk 35223   LHypclh 36121   DVecHcdvh 37218   ocHcoch 37487  mapdcmpd 37764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pr 4601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-mapd 37765
This theorem is referenced by:  mapdval2N  37770  mapdordlem2  37777  mapdrval  37787
  Copyright terms: Public domain W3C validator