Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval5N Structured version   Unicode version

Theorem mapdval5N 34910
Description: Value of projectivity from vector space H to dual space. (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval4.h  |-  H  =  ( LHyp `  K
)
mapdval4.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdval4.s  |-  S  =  ( LSubSp `  U )
mapdval4.f  |-  F  =  (LFnl `  U )
mapdval4.l  |-  L  =  (LKer `  U )
mapdval4.o  |-  O  =  ( ( ocH `  K
) `  W )
mapdval4.m  |-  M  =  ( (mapd `  K
) `  W )
mapdval4.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdval4.t  |-  ( ph  ->  T  e.  S )
Assertion
Ref Expression
mapdval5N  |-  ( ph  ->  ( M `  T
)  =  U_ v  e.  T  { f  e.  F  |  ( O `  { v } )  =  ( L `  f ) } )
Distinct variable groups:    v, f, F    f, K    v, L    v, O    T, f, v    v, U    f, W    ph, f, v
Allowed substitution hints:    S( v, f)    U( f)    H( v, f)    K( v)    L( f)    M( v, f)    O( f)    W( v)

Proof of Theorem mapdval5N
StepHypRef Expression
1 mapdval4.h . . 3  |-  H  =  ( LHyp `  K
)
2 mapdval4.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 mapdval4.s . . 3  |-  S  =  ( LSubSp `  U )
4 mapdval4.f . . 3  |-  F  =  (LFnl `  U )
5 mapdval4.l . . 3  |-  L  =  (LKer `  U )
6 mapdval4.o . . 3  |-  O  =  ( ( ocH `  K
) `  W )
7 mapdval4.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
8 mapdval4.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
9 mapdval4.t . . 3  |-  ( ph  ->  T  e.  S )
101, 2, 3, 4, 5, 6, 7, 8, 9mapdval4N 34909 . 2  |-  ( ph  ->  ( M `  T
)  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
11 iunrab 4340 . 2  |-  U_ v  e.  T  { f  e.  F  |  ( O `  { v } )  =  ( L `  f ) }  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) }
1210, 11syl6eqr 2479 1  |-  ( ph  ->  ( M `  T
)  =  U_ v  e.  T  { f  e.  F  |  ( O `  { v } )  =  ( L `  f ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1867   E.wrex 2774   {crab 2777   {csn 3993   U_ciun 4293   ` cfv 5592   LSubSpclss 18083  LFnlclfn 32332  LKerclk 32360   HLchlt 32625   LHypclh 33258   DVecHcdvh 34355   ocHcoch 34624  mapdcmpd 34901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-rep 4529  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588  ax-cnex 9584  ax-resscn 9585  ax-1cn 9586  ax-icn 9587  ax-addcl 9588  ax-addrcl 9589  ax-mulcl 9590  ax-mulrcl 9591  ax-mulcom 9592  ax-addass 9593  ax-mulass 9594  ax-distr 9595  ax-i2m1 9596  ax-1ne0 9597  ax-1rid 9598  ax-rnegex 9599  ax-rrecex 9600  ax-cnre 9601  ax-pre-lttri 9602  ax-pre-lttrn 9603  ax-pre-ltadd 9604  ax-pre-mulgt0 9605  ax-riotaBAD 32234
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-nel 2619  df-ral 2778  df-rex 2779  df-reu 2780  df-rmo 2781  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-iin 4296  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-1st 6798  df-2nd 6799  df-tpos 6972  df-undef 7019  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-oadd 7185  df-er 7362  df-map 7473  df-en 7569  df-dom 7570  df-sdom 7571  df-fin 7572  df-pnf 9666  df-mnf 9667  df-xr 9668  df-ltxr 9669  df-le 9670  df-sub 9851  df-neg 9852  df-nn 10599  df-2 10657  df-3 10658  df-4 10659  df-5 10660  df-6 10661  df-n0 10859  df-z 10927  df-uz 11149  df-fz 11772  df-struct 15075  df-ndx 15076  df-slot 15077  df-base 15078  df-sets 15079  df-ress 15080  df-plusg 15155  df-mulr 15156  df-sca 15158  df-vsca 15159  df-0g 15292  df-preset 16117  df-poset 16135  df-plt 16148  df-lub 16164  df-glb 16165  df-join 16166  df-meet 16167  df-p0 16229  df-p1 16230  df-lat 16236  df-clat 16298  df-mgm 16432  df-sgrp 16471  df-mnd 16481  df-submnd 16527  df-grp 16617  df-minusg 16618  df-sbg 16619  df-subg 16758  df-cntz 16915  df-lsm 17216  df-cmn 17360  df-abl 17361  df-mgp 17652  df-ur 17664  df-ring 17710  df-oppr 17779  df-dvdsr 17797  df-unit 17798  df-invr 17828  df-dvr 17839  df-drng 17905  df-lmod 18021  df-lss 18084  df-lsp 18123  df-lvec 18254  df-lsatoms 32251  df-lshyp 32252  df-lfl 32333  df-lkr 32361  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-llines 32772  df-lplanes 32773  df-lvols 32774  df-lines 32775  df-psubsp 32777  df-pmap 32778  df-padd 33070  df-lhyp 33262  df-laut 33263  df-ldil 33378  df-ltrn 33379  df-trl 33434  df-tgrp 34019  df-tendo 34031  df-edring 34033  df-dveca 34279  df-disoa 34306  df-dvech 34356  df-dib 34416  df-dic 34450  df-dih 34506  df-doch 34625  df-djh 34672  df-mapd 34902
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator