Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdval4N Structured version   Unicode version

Theorem mapdval4N 37481
Description: Value of projectivity from vector space H to dual space. TODO: 1. This is shorter than others - make it the official def? (but is not as obvious that it is  C_  C) 2. The unneeded direction of lcfl8a 37352 has awkward  E.- add another thm with only one direction of it? 3. Swap  O `  {
v } and  L `  f? (Contributed by NM, 31-Jan-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdval4.h  |-  H  =  ( LHyp `  K
)
mapdval4.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdval4.s  |-  S  =  ( LSubSp `  U )
mapdval4.f  |-  F  =  (LFnl `  U )
mapdval4.l  |-  L  =  (LKer `  U )
mapdval4.o  |-  O  =  ( ( ocH `  K
) `  W )
mapdval4.m  |-  M  =  ( (mapd `  K
) `  W )
mapdval4.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdval4.t  |-  ( ph  ->  T  e.  S )
Assertion
Ref Expression
mapdval4N  |-  ( ph  ->  ( M `  T
)  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
Distinct variable groups:    v, f, F    f, K    v, L    v, O    T, f, v    v, U    f, W    ph, f, v
Allowed substitution hints:    S( v, f)    U( f)    H( v, f)    K( v)    L( f)    M( v, f)    O( f)    W( v)

Proof of Theorem mapdval4N
Dummy variables  g  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapdval4.h . . 3  |-  H  =  ( LHyp `  K
)
2 mapdval4.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
3 mapdval4.s . . 3  |-  S  =  ( LSubSp `  U )
4 eqid 2457 . . 3  |-  ( LSpan `  U )  =  (
LSpan `  U )
5 mapdval4.f . . 3  |-  F  =  (LFnl `  U )
6 mapdval4.l . . 3  |-  L  =  (LKer `  U )
7 mapdval4.o . . 3  |-  O  =  ( ( ocH `  K
) `  W )
8 mapdval4.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
9 mapdval4.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
10 mapdval4.t . . 3  |-  ( ph  ->  T  e.  S )
11 eqid 2457 . . 3  |-  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11mapdval2N 37479 . 2  |-  ( ph  ->  ( M `  T
)  =  { f  e.  { g  e.  F  |  ( O `
 ( O `  ( L `  g ) ) )  =  ( L `  g ) }  |  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) } )
1311lcfl1lem 37340 . . . . . 6  |-  ( f  e.  { g  e.  F  |  ( O `
 ( O `  ( L `  g ) ) )  =  ( L `  g ) }  <->  ( f  e.  F  /\  ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f ) ) )
1413anbi1i 695 . . . . 5  |-  ( ( f  e.  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( ( f  e.  F  /\  ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )
15 anass 649 . . . . 5  |-  ( ( ( f  e.  F  /\  ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( f  e.  F  /\  ( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) ) )
1614, 15bitri 249 . . . 4  |-  ( ( f  e.  { g  e.  F  |  ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g ) }  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( f  e.  F  /\  ( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) ) )
17 r19.42v 3012 . . . . . 6  |-  ( E. v  e.  T  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  =  ( ( LSpan `  U
) `  { v } ) )  <->  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  E. v  e.  T  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )
18 simprr 757 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( L `  f ) )  =  ( ( LSpan `  U
) `  { v } ) )
1918fveq2d 5876 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( O `  ( L `  f
) ) )  =  ( O `  (
( LSpan `  U ) `  { v } ) ) )
20 simprl 756 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
) )
21 eqid 2457 . . . . . . . . . 10  |-  ( Base `  U )  =  (
Base `  U )
229adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  f  e.  F )  ->  ( K  e.  HL  /\  W  e.  H ) )
2322adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  ( K  e.  HL  /\  W  e.  H ) )
2423adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
2510adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  f  e.  F )  ->  T  e.  S )
2621, 3lssel 17711 . . . . . . . . . . . . 13  |-  ( ( T  e.  S  /\  v  e.  T )  ->  v  e.  ( Base `  U ) )
2725, 26sylan 471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  v  e.  ( Base `  U
) )
2827snssd 4177 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  { v }  C_  ( Base `  U ) )
2928adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  { v }  C_  ( Base `  U ) )
301, 2, 7, 21, 4, 24, 29dochocsp 37228 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  ( ( LSpan `  U ) `  { v } ) )  =  ( O `
 { v } ) )
3119, 20, 303eqtr3rd 2507 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( ( O `  ( O `  ( L `  f
) ) )  =  ( L `  f
)  /\  ( O `  ( L `  f
) )  =  ( ( LSpan `  U ) `  { v } ) ) )  ->  ( O `  { v } )  =  ( L `  f ) )
3227adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
v  e.  ( Base `  U ) )
33 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( O `  {
v } )  =  ( L `  f
) )
3433eqcomd 2465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( L `  f
)  =  ( O `
 { v } ) )
35 sneq 4042 . . . . . . . . . . . . . 14  |-  ( w  =  v  ->  { w }  =  { v } )
3635fveq2d 5876 . . . . . . . . . . . . 13  |-  ( w  =  v  ->  ( O `  { w } )  =  ( O `  { v } ) )
3736eqeq2d 2471 . . . . . . . . . . . 12  |-  ( w  =  v  ->  (
( L `  f
)  =  ( O `
 { w }
)  <->  ( L `  f )  =  ( O `  { v } ) ) )
3837rspcev 3210 . . . . . . . . . . 11  |-  ( ( v  e.  ( Base `  U )  /\  ( L `  f )  =  ( O `  { v } ) )  ->  E. w  e.  ( Base `  U
) ( L `  f )  =  ( O `  { w } ) )
3932, 34, 38syl2anc 661 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  ->  E. w  e.  ( Base `  U ) ( L `  f )  =  ( O `  { w } ) )
4023adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
41 simpllr 760 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
f  e.  F )
421, 7, 2, 21, 5, 6, 40, 41lcfl8a 37352 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  <->  E. w  e.  ( Base `  U
) ( L `  f )  =  ( O `  { w } ) ) )
4339, 42mpbird 232 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f ) )
441, 2, 7, 21, 4, 23, 27dochocsn 37230 . . . . . . . . . . 11  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  ( O `  ( O `  { v } ) )  =  ( (
LSpan `  U ) `  { v } ) )
45 fveq2 5872 . . . . . . . . . . 11  |-  ( ( O `  { v } )  =  ( L `  f )  ->  ( O `  ( O `  { v } ) )  =  ( O `  ( L `  f )
) )
4644, 45sylan9req 2519 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( ( LSpan `  U
) `  { v } )  =  ( O `  ( L `
 f ) ) )
4746eqcomd 2465 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( O `  ( L `  f )
)  =  ( (
LSpan `  U ) `  { v } ) )
4843, 47jca 532 . . . . . . . 8  |-  ( ( ( ( ph  /\  f  e.  F )  /\  v  e.  T
)  /\  ( O `  { v } )  =  ( L `  f ) )  -> 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) ) )
4931, 48impbida 832 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  F )  /\  v  e.  T )  ->  (
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <-> 
( O `  {
v } )  =  ( L `  f
) ) )
5049rexbidva 2965 . . . . . 6  |-  ( (
ph  /\  f  e.  F )  ->  ( E. v  e.  T  ( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <->  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) )
5117, 50syl5bbr 259 . . . . 5  |-  ( (
ph  /\  f  e.  F )  ->  (
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) )  <->  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) )
5251pm5.32da 641 . . . 4  |-  ( ph  ->  ( ( f  e.  F  /\  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  E. v  e.  T  ( O `  ( L `  f ) )  =  ( ( LSpan `  U
) `  { v } ) ) )  <-> 
( f  e.  F  /\  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) ) )
5316, 52syl5bb 257 . . 3  |-  ( ph  ->  ( ( f  e. 
{ g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }  /\  E. v  e.  T  ( O `  ( L `  f ) )  =  ( (
LSpan `  U ) `  { v } ) )  <->  ( f  e.  F  /\  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) ) ) )
5453rabbidva2 3099 . 2  |-  ( ph  ->  { f  e.  {
g  e.  F  | 
( O `  ( O `  ( L `  g ) ) )  =  ( L `  g ) }  |  E. v  e.  T  ( O `  ( L `
 f ) )  =  ( ( LSpan `  U ) `  {
v } ) }  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
5512, 54eqtrd 2498 1  |-  ( ph  ->  ( M `  T
)  =  { f  e.  F  |  E. v  e.  T  ( O `  { v } )  =  ( L `  f ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   E.wrex 2808   {crab 2811    C_ wss 3471   {csn 4032   ` cfv 5594   Basecbs 14644   LSubSpclss 17705   LSpanclspn 17744  LFnlclfn 34904  LKerclk 34932   HLchlt 35197   LHypclh 35830   DVecHcdvh 36927   ocHcoch 37196  mapdcmpd 37473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-riotaBAD 34806
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-undef 7020  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-sca 14728  df-vsca 14729  df-0g 14859  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-grp 16184  df-minusg 16185  df-sbg 16186  df-subg 16325  df-cntz 16482  df-lsm 16783  df-cmn 16927  df-abl 16928  df-mgp 17269  df-ur 17281  df-ring 17327  df-oppr 17399  df-dvdsr 17417  df-unit 17418  df-invr 17448  df-dvr 17459  df-drng 17525  df-lmod 17641  df-lss 17706  df-lsp 17745  df-lvec 17876  df-lsatoms 34823  df-lshyp 34824  df-lfl 34905  df-lkr 34933  df-oposet 35023  df-ol 35025  df-oml 35026  df-covers 35113  df-ats 35114  df-atl 35145  df-cvlat 35169  df-hlat 35198  df-llines 35344  df-lplanes 35345  df-lvols 35346  df-lines 35347  df-psubsp 35349  df-pmap 35350  df-padd 35642  df-lhyp 35834  df-laut 35835  df-ldil 35950  df-ltrn 35951  df-trl 36006  df-tgrp 36591  df-tendo 36603  df-edring 36605  df-dveca 36851  df-disoa 36878  df-dvech 36928  df-dib 36988  df-dic 37022  df-dih 37078  df-doch 37197  df-djh 37244  df-mapd 37474
This theorem is referenced by:  mapdval5N  37482  mapd1dim2lem1N  37493
  Copyright terms: Public domain W3C validator