Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem27 Structured version   Unicode version

Theorem mapdpglem27 34699
Description: Lemma for mapdpg 34706. Baer p. 45 line 16: "v(x'-y'') = x'-y'" (with equality swapped). (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h  |-  H  =  ( LHyp `  K
)
mapdpg.m  |-  M  =  ( (mapd `  K
) `  W )
mapdpg.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdpg.v  |-  V  =  ( Base `  U
)
mapdpg.s  |-  .-  =  ( -g `  U )
mapdpg.z  |-  .0.  =  ( 0g `  U )
mapdpg.n  |-  N  =  ( LSpan `  U )
mapdpg.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdpg.f  |-  F  =  ( Base `  C
)
mapdpg.r  |-  R  =  ( -g `  C
)
mapdpg.j  |-  J  =  ( LSpan `  C )
mapdpg.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdpg.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdpg.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdpg.g  |-  ( ph  ->  G  e.  F )
mapdpg.ne  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
mapdpg.e  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
mapdpgem25.h1  |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) ) )
mapdpgem25.i1  |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) ) )
mapdpglem26.a  |-  A  =  (Scalar `  U )
mapdpglem26.b  |-  B  =  ( Base `  A
)
mapdpglem26.t  |-  .x.  =  ( .s `  C )
mapdpglem26.o  |-  O  =  ( 0g `  A
)
Assertion
Ref Expression
mapdpglem27  |-  ( ph  ->  E. v  e.  ( B  \  { O } ) ( G R h )  =  ( v  .x.  ( G R i ) ) )
Distinct variable groups:    h, i,
v    v, B    v, C    v, O    v,  .x.    v, G   
v, R    ph, v
Allowed substitution hints:    ph( h, i)    A( v, h, i)    B( h, i)    C( h, i)    R( h, i)    .x. ( h, i)    U( v, h, i)    F( v, h, i)    G( h, i)    H( v, h, i)    J( v, h, i)    K( v, h, i)    M( v, h, i)    .- ( v, h, i)    N( v, h, i)    O( h, i)    V( v, h, i)    W( v, h, i)    X( v, h, i)    Y( v, h, i)    .0. ( v, h, i)

Proof of Theorem mapdpglem27
StepHypRef Expression
1 mapdpg.h . . . 4  |-  H  =  ( LHyp `  K
)
2 mapdpg.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 mapdpg.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 mapdpg.v . . . 4  |-  V  =  ( Base `  U
)
5 mapdpg.s . . . 4  |-  .-  =  ( -g `  U )
6 mapdpg.z . . . 4  |-  .0.  =  ( 0g `  U )
7 mapdpg.n . . . 4  |-  N  =  ( LSpan `  U )
8 mapdpg.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
9 mapdpg.f . . . 4  |-  F  =  ( Base `  C
)
10 mapdpg.r . . . 4  |-  R  =  ( -g `  C
)
11 mapdpg.j . . . 4  |-  J  =  ( LSpan `  C )
12 mapdpg.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
13 mapdpg.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
14 mapdpg.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
15 mapdpg.g . . . 4  |-  ( ph  ->  G  e.  F )
16 mapdpg.ne . . . 4  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
17 mapdpg.e . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { G } ) )
18 mapdpgem25.h1 . . . 4  |-  ( ph  ->  ( h  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
h } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R h ) } ) ) ) )
19 mapdpgem25.i1 . . . 4  |-  ( ph  ->  ( i  e.  F  /\  ( ( M `  ( N `  { Y } ) )  =  ( J `  {
i } )  /\  ( M `  ( N `
 { ( X 
.-  Y ) } ) )  =  ( J `  { ( G R i ) } ) ) ) )
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19mapdpglem25 34697 . . 3  |-  ( ph  ->  ( ( J `  { h } )  =  ( J `  { i } )  /\  ( J `  { ( G R h ) } )  =  ( J `  { ( G R i ) } ) ) )
2120simprd 461 . 2  |-  ( ph  ->  ( J `  {
( G R h ) } )  =  ( J `  {
( G R i ) } ) )
22 eqid 2402 . . . 4  |-  (Scalar `  C )  =  (Scalar `  C )
23 eqid 2402 . . . 4  |-  ( Base `  (Scalar `  C )
)  =  ( Base `  (Scalar `  C )
)
24 eqid 2402 . . . 4  |-  ( 0g
`  (Scalar `  C )
)  =  ( 0g
`  (Scalar `  C )
)
25 mapdpglem26.t . . . 4  |-  .x.  =  ( .s `  C )
261, 8, 12lcdlvec 34591 . . . 4  |-  ( ph  ->  C  e.  LVec )
271, 8, 12lcdlmod 34592 . . . . 5  |-  ( ph  ->  C  e.  LMod )
2818simpld 457 . . . . 5  |-  ( ph  ->  h  e.  F )
299, 10lmodvsubcl 17873 . . . . 5  |-  ( ( C  e.  LMod  /\  G  e.  F  /\  h  e.  F )  ->  ( G R h )  e.  F )
3027, 15, 28, 29syl3anc 1230 . . . 4  |-  ( ph  ->  ( G R h )  e.  F )
3119simpld 457 . . . . 5  |-  ( ph  ->  i  e.  F )
329, 10lmodvsubcl 17873 . . . . 5  |-  ( ( C  e.  LMod  /\  G  e.  F  /\  i  e.  F )  ->  ( G R i )  e.  F )
3327, 15, 31, 32syl3anc 1230 . . . 4  |-  ( ph  ->  ( G R i )  e.  F )
349, 22, 23, 24, 25, 11, 26, 30, 33lspsneq 18086 . . 3  |-  ( ph  ->  ( ( J `  { ( G R h ) } )  =  ( J `  { ( G R i ) } )  <->  E. v  e.  (
( Base `  (Scalar `  C
) )  \  {
( 0g `  (Scalar `  C ) ) } ) ( G R h )  =  ( v  .x.  ( G R i ) ) ) )
35 mapdpglem26.a . . . . . 6  |-  A  =  (Scalar `  U )
36 mapdpglem26.b . . . . . 6  |-  B  =  ( Base `  A
)
371, 3, 35, 36, 8, 22, 23, 12lcdsbase 34600 . . . . 5  |-  ( ph  ->  ( Base `  (Scalar `  C ) )  =  B )
38 mapdpglem26.o . . . . . . 7  |-  O  =  ( 0g `  A
)
391, 3, 35, 38, 8, 22, 24, 12lcd0 34608 . . . . . 6  |-  ( ph  ->  ( 0g `  (Scalar `  C ) )  =  O )
4039sneqd 3983 . . . . 5  |-  ( ph  ->  { ( 0g `  (Scalar `  C ) ) }  =  { O } )
4137, 40difeq12d 3561 . . . 4  |-  ( ph  ->  ( ( Base `  (Scalar `  C ) )  \  { ( 0g `  (Scalar `  C ) ) } )  =  ( B  \  { O } ) )
4241rexeqdv 3010 . . 3  |-  ( ph  ->  ( E. v  e.  ( ( Base `  (Scalar `  C ) )  \  { ( 0g `  (Scalar `  C ) ) } ) ( G R h )  =  ( v  .x.  ( G R i ) )  <->  E. v  e.  ( B  \  { O }
) ( G R h )  =  ( v  .x.  ( G R i ) ) ) )
4334, 42bitrd 253 . 2  |-  ( ph  ->  ( ( J `  { ( G R h ) } )  =  ( J `  { ( G R i ) } )  <->  E. v  e.  ( B  \  { O }
) ( G R h )  =  ( v  .x.  ( G R i ) ) ) )
4421, 43mpbid 210 1  |-  ( ph  ->  E. v  e.  ( B  \  { O } ) ( G R h )  =  ( v  .x.  ( G R i ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   E.wrex 2754    \ cdif 3410   {csn 3971   ` cfv 5568  (class class class)co 6277   Basecbs 14839  Scalarcsca 14910   .scvsca 14911   0gc0g 15052   -gcsg 16377   LModclmod 17830   LSpanclspn 17935   HLchlt 32348   LHypclh 32981   DVecHcdvh 34078  LCDualclcd 34586  mapdcmpd 34624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-riotaBAD 31957
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-iin 4273  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-of 6520  df-om 6683  df-1st 6783  df-2nd 6784  df-tpos 6957  df-undef 7004  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-2 10634  df-3 10635  df-4 10636  df-5 10637  df-6 10638  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-struct 14841  df-ndx 14842  df-slot 14843  df-base 14844  df-sets 14845  df-ress 14846  df-plusg 14920  df-mulr 14921  df-sca 14923  df-vsca 14924  df-0g 15054  df-mre 15198  df-mrc 15199  df-acs 15201  df-preset 15879  df-poset 15897  df-plt 15910  df-lub 15926  df-glb 15927  df-join 15928  df-meet 15929  df-p0 15991  df-p1 15992  df-lat 15998  df-clat 16060  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-submnd 16289  df-grp 16379  df-minusg 16380  df-sbg 16381  df-subg 16520  df-cntz 16677  df-oppg 16703  df-lsm 16978  df-cmn 17122  df-abl 17123  df-mgp 17460  df-ur 17472  df-ring 17518  df-oppr 17590  df-dvdsr 17608  df-unit 17609  df-invr 17639  df-dvr 17650  df-drng 17716  df-lmod 17832  df-lss 17897  df-lsp 17936  df-lvec 18067  df-lsatoms 31974  df-lshyp 31975  df-lcv 32017  df-lfl 32056  df-lkr 32084  df-ldual 32122  df-oposet 32174  df-ol 32176  df-oml 32177  df-covers 32264  df-ats 32265  df-atl 32296  df-cvlat 32320  df-hlat 32349  df-llines 32495  df-lplanes 32496  df-lvols 32497  df-lines 32498  df-psubsp 32500  df-pmap 32501  df-padd 32793  df-lhyp 32985  df-laut 32986  df-ldil 33101  df-ltrn 33102  df-trl 33157  df-tgrp 33742  df-tendo 33754  df-edring 33756  df-dveca 34002  df-disoa 34029  df-dvech 34079  df-dib 34139  df-dic 34173  df-dih 34229  df-doch 34348  df-djh 34395  df-lcdual 34587
This theorem is referenced by:  mapdpglem32  34705
  Copyright terms: Public domain W3C validator