MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom2 Structured version   Visualization version   Unicode version

Theorem mapdom2 7761
Description: Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
mapdom2  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )

Proof of Theorem mapdom2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 468 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  C  =  (/) )
21oveq1d 6323 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  =  ( (/)  ^m  A ) )
3 simplr 770 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  -.  ( A  =  (/)  /\  C  =  (/) ) )
4 idd 24 . . . . . . . . . . 11  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( A  =  (/)  ->  A  =  (/) ) )
54, 1jctird 553 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( A  =  (/)  ->  ( A  =  (/)  /\  C  =  (/) ) ) )
63, 5mtod 182 . . . . . . . . 9  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  -.  A  =  (/) )
76neqned 2650 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  A  =/=  (/) )
8 map0b 7528 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )
97, 8syl 17 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( (/) 
^m  A )  =  (/) )
102, 9eqtrd 2505 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  =  (/) )
11 ovex 6336 . . . . . . 7  |-  ( C  ^m  B )  e. 
_V
12110dom 7720 . . . . . 6  |-  (/)  ~<_  ( C  ^m  B )
1310, 12syl6eqbr 4433 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
14 simpll 768 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  A  ~<_  B )
15 reldom 7593 . . . . . . . . . . 11  |-  Rel  ~<_
1615brrelex2i 4881 . . . . . . . . . 10  |-  ( A  ~<_  B  ->  B  e.  _V )
1716ad2antrr 740 . . . . . . . . 9  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  B  e.  _V )
18 domeng 7601 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
1917, 18syl 17 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
2014, 19mpbid 215 . . . . . . 7  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  E. x ( A  ~~  x  /\  x  C_  B
) )
21 enrefg 7619 . . . . . . . . . . . 12  |-  ( C  e.  _V  ->  C  ~~  C )
2221ad2antlr 741 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  ~~  C
)
23 simprrl 782 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  A  ~~  x
)
24 mapen 7754 . . . . . . . . . . 11  |-  ( ( C  ~~  C  /\  A  ~~  x )  -> 
( C  ^m  A
)  ~~  ( C  ^m  x ) )
2522, 23, 24syl2anc 673 . . . . . . . . . 10  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  A )  ~~  ( C  ^m  x ) )
26 ovex 6336 . . . . . . . . . . . . 13  |-  ( C  ^m  x )  e. 
_V
2726a1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  e.  _V )
28 ovex 6336 . . . . . . . . . . . . 13  |-  ( C  ^m  ( B  \  x ) )  e. 
_V
2928a1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( B  \  x
) )  e.  _V )
30 simprl 772 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  =/=  (/) )
31 simplr 770 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  e.  _V )
3216ad2antrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  B  e.  _V )
33 difexg 4545 . . . . . . . . . . . . . . 15  |-  ( B  e.  _V  ->  ( B  \  x )  e. 
_V )
3432, 33syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( B  \  x )  e.  _V )
35 map0g 7529 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( ( C  ^m  ( B  \  x
) )  =  (/)  <->  ( C  =  (/)  /\  ( B  \  x )  =/=  (/) ) ) )
36 simpl 464 . . . . . . . . . . . . . . . 16  |-  ( ( C  =  (/)  /\  ( B  \  x )  =/=  (/) )  ->  C  =  (/) )
3735, 36syl6bi 236 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( ( C  ^m  ( B  \  x
) )  =  (/)  ->  C  =  (/) ) )
3837necon3d 2664 . . . . . . . . . . . . . 14  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( C  =/=  (/)  ->  ( C  ^m  ( B  \  x ) )  =/=  (/) ) )
3931, 34, 38syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  =/=  (/)  ->  ( C  ^m  ( B  \  x
) )  =/=  (/) ) )
4030, 39mpd 15 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( B  \  x
) )  =/=  (/) )
41 xpdom3 7688 . . . . . . . . . . . 12  |-  ( ( ( C  ^m  x
)  e.  _V  /\  ( C  ^m  ( B  \  x ) )  e.  _V  /\  ( C  ^m  ( B  \  x ) )  =/=  (/) )  ->  ( C  ^m  x )  ~<_  ( ( C  ^m  x
)  X.  ( C  ^m  ( B  \  x ) ) ) )
4227, 29, 40, 41syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  ~<_  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) ) )
43 vex 3034 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
4443a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  x  e.  _V )
45 disjdif 3830 . . . . . . . . . . . . . . 15  |-  ( x  i^i  ( B  \  x ) )  =  (/)
4645a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( x  i^i  ( B  \  x
) )  =  (/) )
47 mapunen 7759 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  _V  /\  ( B  \  x
)  e.  _V  /\  C  e.  _V )  /\  ( x  i^i  ( B  \  x ) )  =  (/) )  ->  ( C  ^m  ( x  u.  ( B  \  x
) ) )  ~~  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) ) )
4844, 34, 31, 46, 47syl31anc 1295 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( x  u.  ( B  \  x ) ) )  ~~  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) ) )
4948ensymd 7638 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ~~  ( C  ^m  ( x  u.  ( B  \  x
) ) ) )
50 simprrr 783 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  x  C_  B
)
51 undif 3839 . . . . . . . . . . . . . 14  |-  ( x 
C_  B  <->  ( x  u.  ( B  \  x
) )  =  B )
5250, 51sylib 201 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( x  u.  ( B  \  x
) )  =  B )
5352oveq2d 6324 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( x  u.  ( B  \  x ) ) )  =  ( C  ^m  B ) )
5449, 53breqtrd 4420 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ~~  ( C  ^m  B ) )
55 domentr 7646 . . . . . . . . . . 11  |-  ( ( ( C  ^m  x
)  ~<_  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  /\  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) )  ~~  ( C  ^m  B ) )  ->  ( C  ^m  x )  ~<_  ( C  ^m  B ) )
5642, 54, 55syl2anc 673 . . . . . . . . . 10  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  ~<_  ( C  ^m  B ) )
57 endomtr 7645 . . . . . . . . . 10  |-  ( ( ( C  ^m  A
)  ~~  ( C  ^m  x )  /\  ( C  ^m  x )  ~<_  ( C  ^m  B ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
5825, 56, 57syl2anc 673 . . . . . . . . 9  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
5958expr 626 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( ( A  ~~  x  /\  x  C_  B
)  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) ) )
6059exlimdv 1787 . . . . . . 7  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( E. x ( A  ~~  x  /\  x  C_  B )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) ) )
6120, 60mpd 15 . . . . . 6  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )
6261adantlr 729 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =/=  (/) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6313, 62pm2.61dane 2730 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6463an32s 821 . . 3  |-  ( ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  e.  _V )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6564ex 441 . 2  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  e.  _V  ->  ( C  ^m  A
)  ~<_  ( C  ^m  B ) ) )
66 reldmmap 7499 . . . 4  |-  Rel  dom  ^m
6766ovprc1 6339 . . 3  |-  ( -.  C  e.  _V  ->  ( C  ^m  A )  =  (/) )
6867, 12syl6eqbr 4433 . 2  |-  ( -.  C  e.  _V  ->  ( C  ^m  A )  ~<_  ( C  ^m  B
) )
6965, 68pm2.61d1 164 1  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452   E.wex 1671    e. wcel 1904    =/= wne 2641   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   class class class wbr 4395    X. cxp 4837  (class class class)co 6308    ^m cmap 7490    ~~ cen 7584    ~<_ cdom 7585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-er 7381  df-map 7492  df-en 7588  df-dom 7589
This theorem is referenced by:  mapdom3  7762  cfpwsdom  9027  hauspwdom  20593
  Copyright terms: Public domain W3C validator