MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom2 Unicode version

Theorem mapdom2 7237
Description: Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.)
Assertion
Ref Expression
mapdom2  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )

Proof of Theorem mapdom2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 448 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  C  =  (/) )
21oveq1d 6055 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  =  ( (/)  ^m  A ) )
3 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  -.  ( A  =  (/)  /\  C  =  (/) ) )
4 idd 22 . . . . . . . . . . 11  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( A  =  (/)  ->  A  =  (/) ) )
54, 1jctird 529 . . . . . . . . . 10  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( A  =  (/)  ->  ( A  =  (/)  /\  C  =  (/) ) ) )
63, 5mtod 170 . . . . . . . . 9  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  -.  A  =  (/) )
76neneqad 2637 . . . . . . . 8  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  A  =/=  (/) )
8 map0b 7011 . . . . . . . 8  |-  ( A  =/=  (/)  ->  ( (/)  ^m  A
)  =  (/) )
97, 8syl 16 . . . . . . 7  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( (/) 
^m  A )  =  (/) )
102, 9eqtrd 2436 . . . . . 6  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  =  (/) )
11 ovex 6065 . . . . . . 7  |-  ( C  ^m  B )  e. 
_V
12110dom 7196 . . . . . 6  |-  (/)  ~<_  ( C  ^m  B )
1310, 12syl6eqbr 4209 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =  (/) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
14 simpll 731 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  A  ~<_  B )
15 reldom 7074 . . . . . . . . . . 11  |-  Rel  ~<_
1615brrelex2i 4878 . . . . . . . . . 10  |-  ( A  ~<_  B  ->  B  e.  _V )
1716ad2antrr 707 . . . . . . . . 9  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  B  e.  _V )
18 domeng 7081 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
1917, 18syl 16 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
2014, 19mpbid 202 . . . . . . 7  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  ->  E. x ( A  ~~  x  /\  x  C_  B
) )
21 enrefg 7098 . . . . . . . . . . . 12  |-  ( C  e.  _V  ->  C  ~~  C )
2221ad2antlr 708 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  ~~  C
)
23 simprrl 741 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  A  ~~  x
)
24 mapen 7230 . . . . . . . . . . 11  |-  ( ( C  ~~  C  /\  A  ~~  x )  -> 
( C  ^m  A
)  ~~  ( C  ^m  x ) )
2522, 23, 24syl2anc 643 . . . . . . . . . 10  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  A )  ~~  ( C  ^m  x ) )
26 ovex 6065 . . . . . . . . . . . . 13  |-  ( C  ^m  x )  e. 
_V
2726a1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  e.  _V )
28 ovex 6065 . . . . . . . . . . . . 13  |-  ( C  ^m  ( B  \  x ) )  e. 
_V
2928a1i 11 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( B  \  x
) )  e.  _V )
30 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  =/=  (/) )
31 simplr 732 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  C  e.  _V )
3216ad2antrr 707 . . . . . . . . . . . . . . 15  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  B  e.  _V )
33 difexg 4311 . . . . . . . . . . . . . . 15  |-  ( B  e.  _V  ->  ( B  \  x )  e. 
_V )
3432, 33syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( B  \  x )  e.  _V )
35 map0g 7012 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( ( C  ^m  ( B  \  x
) )  =  (/)  <->  ( C  =  (/)  /\  ( B  \  x )  =/=  (/) ) ) )
36 simpl 444 . . . . . . . . . . . . . . . 16  |-  ( ( C  =  (/)  /\  ( B  \  x )  =/=  (/) )  ->  C  =  (/) )
3735, 36syl6bi 220 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( ( C  ^m  ( B  \  x
) )  =  (/)  ->  C  =  (/) ) )
3837necon3d 2605 . . . . . . . . . . . . . 14  |-  ( ( C  e.  _V  /\  ( B  \  x
)  e.  _V )  ->  ( C  =/=  (/)  ->  ( C  ^m  ( B  \  x ) )  =/=  (/) ) )
3931, 34, 38syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  =/=  (/)  ->  ( C  ^m  ( B  \  x
) )  =/=  (/) ) )
4030, 39mpd 15 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( B  \  x
) )  =/=  (/) )
41 xpdom3 7165 . . . . . . . . . . . 12  |-  ( ( ( C  ^m  x
)  e.  _V  /\  ( C  ^m  ( B  \  x ) )  e.  _V  /\  ( C  ^m  ( B  \  x ) )  =/=  (/) )  ->  ( C  ^m  x )  ~<_  ( ( C  ^m  x
)  X.  ( C  ^m  ( B  \  x ) ) ) )
4227, 29, 40, 41syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  ~<_  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) ) )
43 vex 2919 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
4443a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  x  e.  _V )
45 disjdif 3660 . . . . . . . . . . . . . . 15  |-  ( x  i^i  ( B  \  x ) )  =  (/)
4645a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( x  i^i  ( B  \  x
) )  =  (/) )
47 mapunen 7235 . . . . . . . . . . . . . 14  |-  ( ( ( x  e.  _V  /\  ( B  \  x
)  e.  _V  /\  C  e.  _V )  /\  ( x  i^i  ( B  \  x ) )  =  (/) )  ->  ( C  ^m  ( x  u.  ( B  \  x
) ) )  ~~  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) ) )
4844, 34, 31, 46, 47syl31anc 1187 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( x  u.  ( B  \  x ) ) )  ~~  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) ) )
4948ensymd 7117 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ~~  ( C  ^m  ( x  u.  ( B  \  x
) ) ) )
50 simprrr 742 . . . . . . . . . . . . . 14  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  x  C_  B
)
51 undif 3668 . . . . . . . . . . . . . 14  |-  ( x 
C_  B  <->  ( x  u.  ( B  \  x
) )  =  B )
5250, 51sylib 189 . . . . . . . . . . . . 13  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( x  u.  ( B  \  x
) )  =  B )
5352oveq2d 6056 . . . . . . . . . . . 12  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  ( x  u.  ( B  \  x ) ) )  =  ( C  ^m  B ) )
5449, 53breqtrd 4196 . . . . . . . . . . 11  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  ~~  ( C  ^m  B ) )
55 domentr 7125 . . . . . . . . . . 11  |-  ( ( ( C  ^m  x
)  ~<_  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x ) ) )  /\  ( ( C  ^m  x )  X.  ( C  ^m  ( B  \  x
) ) )  ~~  ( C  ^m  B ) )  ->  ( C  ^m  x )  ~<_  ( C  ^m  B ) )
5642, 54, 55syl2anc 643 . . . . . . . . . 10  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  x )  ~<_  ( C  ^m  B ) )
57 endomtr 7124 . . . . . . . . . 10  |-  ( ( ( C  ^m  A
)  ~~  ( C  ^m  x )  /\  ( C  ^m  x )  ~<_  ( C  ^m  B ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
5825, 56, 57syl2anc 643 . . . . . . . . 9  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( C  =/=  (/)  /\  ( A  ~~  x  /\  x  C_  B ) ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
5958expr 599 . . . . . . . 8  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( ( A  ~~  x  /\  x  C_  B
)  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) ) )
6059exlimdv 1643 . . . . . . 7  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( E. x ( A  ~~  x  /\  x  C_  B )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) ) )
6120, 60mpd 15 . . . . . 6  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  C  =/=  (/) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )
6261adantlr 696 . . . . 5  |-  ( ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  =/=  (/) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6313, 62pm2.61dane 2645 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6463an32s 780 . . 3  |-  ( ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  /\  C  e.  _V )  ->  ( C  ^m  A )  ~<_  ( C  ^m  B ) )
6564ex 424 . 2  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  e.  _V  ->  ( C  ^m  A
)  ~<_  ( C  ^m  B ) ) )
66 reldmmap 6986 . . . 4  |-  Rel  dom  ^m
6766ovprc1 6068 . . 3  |-  ( -.  C  e.  _V  ->  ( C  ^m  A )  =  (/) )
6867, 12syl6eqbr 4209 . 2  |-  ( -.  C  e.  _V  ->  ( C  ^m  A )  ~<_  ( C  ^m  B
) )
6965, 68pm2.61d1 153 1  |-  ( ( A  ~<_  B  /\  -.  ( A  =  (/)  /\  C  =  (/) ) )  -> 
( C  ^m  A
)  ~<_  ( C  ^m  B ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721    =/= wne 2567   _Vcvv 2916    \ cdif 3277    u. cun 3278    i^i cin 3279    C_ wss 3280   (/)c0 3588   class class class wbr 4172    X. cxp 4835  (class class class)co 6040    ^m cmap 6977    ~~ cen 7065    ~<_ cdom 7066
This theorem is referenced by:  mapdom3  7238  cfpwsdom  8415  hauspwdom  17517
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-er 6864  df-map 6979  df-en 7069  df-dom 7070
  Copyright terms: Public domain W3C validator