MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom1 Structured version   Unicode version

Theorem mapdom1 7476
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
mapdom1  |-  ( A  ~<_  B  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )

Proof of Theorem mapdom1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 7316 . . . . . . 7  |-  Rel  ~<_
21brrelex2i 4880 . . . . . 6  |-  ( A  ~<_  B  ->  B  e.  _V )
3 domeng 7324 . . . . . 6  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
42, 3syl 16 . . . . 5  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
54ibi 241 . . . 4  |-  ( A  ~<_  B  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
65adantr 465 . . 3  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
7 simpl 457 . . . . 5  |-  ( ( A  ~~  x  /\  x  C_  B )  ->  A  ~~  x )
8 enrefg 7341 . . . . . 6  |-  ( C  e.  _V  ->  C  ~~  C )
98adantl 466 . . . . 5  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  C  ~~  C )
10 mapen 7475 . . . . 5  |-  ( ( A  ~~  x  /\  C  ~~  C )  -> 
( A  ^m  C
)  ~~  ( x  ^m  C ) )
117, 9, 10syl2anr 478 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~~  (
x  ^m  C )
)
12 ovex 6116 . . . . 5  |-  ( B  ^m  C )  e. 
_V
132ad2antrr 725 . . . . . 6  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  B  e.  _V )
14 simprr 756 . . . . . 6  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  x  C_  B
)
15 mapss 7255 . . . . . 6  |-  ( ( B  e.  _V  /\  x  C_  B )  -> 
( x  ^m  C
)  C_  ( B  ^m  C ) )
1613, 14, 15syl2anc 661 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  C_  ( B  ^m  C ) )
17 ssdomg 7355 . . . . 5  |-  ( ( B  ^m  C )  e.  _V  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
1812, 16, 17mpsyl 63 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) )
19 endomtr 7367 . . . 4  |-  ( ( ( A  ^m  C
)  ~~  ( x  ^m  C )  /\  (
x  ^m  C )  ~<_  ( B  ^m  C ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
2011, 18, 19syl2anc 661 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
216, 20exlimddv 1692 . 2  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
22 elmapex 7233 . . . . . . 7  |-  ( x  e.  ( A  ^m  C )  ->  ( A  e.  _V  /\  C  e.  _V ) )
2322simprd 463 . . . . . 6  |-  ( x  e.  ( A  ^m  C )  ->  C  e.  _V )
2423con3i 135 . . . . 5  |-  ( -.  C  e.  _V  ->  -.  x  e.  ( A  ^m  C ) )
2524eq0rdv 3672 . . . 4  |-  ( -.  C  e.  _V  ->  ( A  ^m  C )  =  (/) )
2625adantl 466 . . 3  |-  ( ( A  ~<_  B  /\  -.  C  e.  _V )  ->  ( A  ^m  C
)  =  (/) )
27120dom 7441 . . 3  |-  (/)  ~<_  ( B  ^m  C )
2826, 27syl6eqbr 4329 . 2  |-  ( ( A  ~<_  B  /\  -.  C  e.  _V )  ->  ( A  ^m  C
)  ~<_  ( B  ^m  C ) )
2921, 28pm2.61dan 789 1  |-  ( A  ~<_  B  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   _Vcvv 2972    C_ wss 3328   (/)c0 3637   class class class wbr 4292  (class class class)co 6091    ^m cmap 7214    ~~ cen 7307    ~<_ cdom 7308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-1st 6577  df-2nd 6578  df-map 7216  df-en 7311  df-dom 7312
This theorem is referenced by:  mappwen  8282  pwcfsdom  8747  cfpwsdom  8748  rpnnen  13509  rexpen  13510  hauspwdom  19105
  Copyright terms: Public domain W3C validator