MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapdom1 Structured version   Unicode version

Theorem mapdom1 7743
Description: Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.)
Assertion
Ref Expression
mapdom1  |-  ( A  ~<_  B  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )

Proof of Theorem mapdom1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 7583 . . . . . . 7  |-  Rel  ~<_
21brrelex2i 4896 . . . . . 6  |-  ( A  ~<_  B  ->  B  e.  _V )
3 domeng 7591 . . . . . 6  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. x
( A  ~~  x  /\  x  C_  B ) ) )
42, 3syl 17 . . . . 5  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. x ( A 
~~  x  /\  x  C_  B ) ) )
54ibi 244 . . . 4  |-  ( A  ~<_  B  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
65adantr 466 . . 3  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  E. x
( A  ~~  x  /\  x  C_  B ) )
7 simpl 458 . . . . 5  |-  ( ( A  ~~  x  /\  x  C_  B )  ->  A  ~~  x )
8 enrefg 7608 . . . . . 6  |-  ( C  e.  _V  ->  C  ~~  C )
98adantl 467 . . . . 5  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  C  ~~  C )
10 mapen 7742 . . . . 5  |-  ( ( A  ~~  x  /\  C  ~~  C )  -> 
( A  ^m  C
)  ~~  ( x  ^m  C ) )
117, 9, 10syl2anr 480 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~~  (
x  ^m  C )
)
12 ovex 6333 . . . . 5  |-  ( B  ^m  C )  e. 
_V
132ad2antrr 730 . . . . . 6  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  B  e.  _V )
14 simprr 764 . . . . . 6  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  x  C_  B
)
15 mapss 7522 . . . . . 6  |-  ( ( B  e.  _V  /\  x  C_  B )  -> 
( x  ^m  C
)  C_  ( B  ^m  C ) )
1613, 14, 15syl2anc 665 . . . . 5  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  C_  ( B  ^m  C ) )
17 ssdomg 7622 . . . . 5  |-  ( ( B  ^m  C )  e.  _V  ->  (
( x  ^m  C
)  C_  ( B  ^m  C )  ->  (
x  ^m  C )  ~<_  ( B  ^m  C ) ) )
1812, 16, 17mpsyl 65 . . . 4  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( x  ^m  C )  ~<_  ( B  ^m  C ) )
19 endomtr 7634 . . . 4  |-  ( ( ( A  ^m  C
)  ~~  ( x  ^m  C )  /\  (
x  ^m  C )  ~<_  ( B  ^m  C ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
2011, 18, 19syl2anc 665 . . 3  |-  ( ( ( A  ~<_  B  /\  C  e.  _V )  /\  ( A  ~~  x  /\  x  C_  B ) )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
216, 20exlimddv 1773 . 2  |-  ( ( A  ~<_  B  /\  C  e.  _V )  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
22 elmapex 7500 . . . . . . 7  |-  ( x  e.  ( A  ^m  C )  ->  ( A  e.  _V  /\  C  e.  _V ) )
2322simprd 464 . . . . . 6  |-  ( x  e.  ( A  ^m  C )  ->  C  e.  _V )
2423con3i 140 . . . . 5  |-  ( -.  C  e.  _V  ->  -.  x  e.  ( A  ^m  C ) )
2524eq0rdv 3803 . . . 4  |-  ( -.  C  e.  _V  ->  ( A  ^m  C )  =  (/) )
2625adantl 467 . . 3  |-  ( ( A  ~<_  B  /\  -.  C  e.  _V )  ->  ( A  ^m  C
)  =  (/) )
27120dom 7708 . . 3  |-  (/)  ~<_  ( B  ^m  C )
2826, 27syl6eqbr 4463 . 2  |-  ( ( A  ~<_  B  /\  -.  C  e.  _V )  ->  ( A  ^m  C
)  ~<_  ( B  ^m  C ) )
2921, 28pm2.61dan 798 1  |-  ( A  ~<_  B  ->  ( A  ^m  C )  ~<_  ( B  ^m  C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1870   _Vcvv 3087    C_ wss 3442   (/)c0 3767   class class class wbr 4426  (class class class)co 6305    ^m cmap 7480    ~~ cen 7574    ~<_ cdom 7575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7482  df-en 7578  df-dom 7579
This theorem is referenced by:  mappwen  8541  pwcfsdom  9006  cfpwsdom  9007  rpnnen  14257  rexpen  14258  hauspwdom  20447
  Copyright terms: Public domain W3C validator