Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdlsm Structured version   Unicode version

Theorem mapdlsm 34941
Description: Subspace sum is preserved by the map defined by df-mapd 34902. Part of property (e) in [Baer] p. 40. (Contributed by NM, 13-Mar-2015.)
Hypotheses
Ref Expression
mapdlsm.h  |-  H  =  ( LHyp `  K
)
mapdlsm.m  |-  M  =  ( (mapd `  K
) `  W )
mapdlsm.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdlsm.s  |-  S  =  ( LSubSp `  U )
mapdlsm.p  |-  .(+)  =  (
LSSum `  U )
mapdlsm.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdlsm.q  |-  .+b  =  ( LSSum `  C )
mapdlsm.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdlsm.x  |-  ( ph  ->  X  e.  S )
mapdlsm.y  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
mapdlsm  |-  ( ph  ->  ( M `  ( X  .(+)  Y ) )  =  ( ( M `
 X )  .+b  ( M `  Y ) ) )

Proof of Theorem mapdlsm
StepHypRef Expression
1 mapdlsm.h . . . . . . . . . . 11  |-  H  =  ( LHyp `  K
)
2 mapdlsm.c . . . . . . . . . . 11  |-  C  =  ( (LCDual `  K
) `  W )
3 mapdlsm.k . . . . . . . . . . 11  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3lcdlmod 34869 . . . . . . . . . 10  |-  ( ph  ->  C  e.  LMod )
5 eqid 2429 . . . . . . . . . . 11  |-  ( LSubSp `  C )  =  (
LSubSp `  C )
65lsssssubg 18116 . . . . . . . . . 10  |-  ( C  e.  LMod  ->  ( LSubSp `  C )  C_  (SubGrp `  C ) )
74, 6syl 17 . . . . . . . . 9  |-  ( ph  ->  ( LSubSp `  C )  C_  (SubGrp `  C )
)
8 mapdlsm.m . . . . . . . . . 10  |-  M  =  ( (mapd `  K
) `  W )
9 mapdlsm.u . . . . . . . . . 10  |-  U  =  ( ( DVecH `  K
) `  W )
10 mapdlsm.s . . . . . . . . . 10  |-  S  =  ( LSubSp `  U )
11 mapdlsm.x . . . . . . . . . 10  |-  ( ph  ->  X  e.  S )
121, 8, 9, 10, 2, 5, 3, 11mapdcl2 34933 . . . . . . . . 9  |-  ( ph  ->  ( M `  X
)  e.  ( LSubSp `  C ) )
137, 12sseldd 3471 . . . . . . . 8  |-  ( ph  ->  ( M `  X
)  e.  (SubGrp `  C ) )
14 mapdlsm.y . . . . . . . . . 10  |-  ( ph  ->  Y  e.  S )
151, 8, 9, 10, 2, 5, 3, 14mapdcl2 34933 . . . . . . . . 9  |-  ( ph  ->  ( M `  Y
)  e.  ( LSubSp `  C ) )
167, 15sseldd 3471 . . . . . . . 8  |-  ( ph  ->  ( M `  Y
)  e.  (SubGrp `  C ) )
17 mapdlsm.q . . . . . . . . 9  |-  .+b  =  ( LSSum `  C )
1817lsmub1 17243 . . . . . . . 8  |-  ( ( ( M `  X
)  e.  (SubGrp `  C )  /\  ( M `  Y )  e.  (SubGrp `  C )
)  ->  ( M `  X )  C_  (
( M `  X
)  .+b  ( M `  Y ) ) )
1913, 16, 18syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( M `  X
)  C_  ( ( M `  X )  .+b  ( M `  Y
) ) )
201, 8, 9, 10, 3, 11mapdcl 34930 . . . . . . . . 9  |-  ( ph  ->  ( M `  X
)  e.  ran  M
)
211, 8, 9, 10, 3, 14mapdcl 34930 . . . . . . . . 9  |-  ( ph  ->  ( M `  Y
)  e.  ran  M
)
221, 8, 9, 2, 17, 3, 20, 21mapdlsmcl 34940 . . . . . . . 8  |-  ( ph  ->  ( ( M `  X )  .+b  ( M `  Y )
)  e.  ran  M
)
231, 8, 3, 22mapdcnvid2 34934 . . . . . . 7  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X ) 
.+b  ( M `  Y ) ) ) )  =  ( ( M `  X ) 
.+b  ( M `  Y ) ) )
2419, 23sseqtr4d 3507 . . . . . 6  |-  ( ph  ->  ( M `  X
)  C_  ( M `  ( `' M `  ( ( M `  X )  .+b  ( M `  Y )
) ) ) )
251, 8, 9, 10, 3, 22mapdcnvcl 34929 . . . . . . 7  |-  ( ph  ->  ( `' M `  ( ( M `  X )  .+b  ( M `  Y )
) )  e.  S
)
261, 9, 10, 8, 3, 11, 25mapdord 34915 . . . . . 6  |-  ( ph  ->  ( ( M `  X )  C_  ( M `  ( `' M `  ( ( M `  X )  .+b  ( M `  Y
) ) ) )  <-> 
X  C_  ( `' M `  ( ( M `  X )  .+b  ( M `  Y
) ) ) ) )
2724, 26mpbid 213 . . . . 5  |-  ( ph  ->  X  C_  ( `' M `  ( ( M `  X )  .+b  ( M `  Y
) ) ) )
2817lsmub2 17244 . . . . . . . 8  |-  ( ( ( M `  X
)  e.  (SubGrp `  C )  /\  ( M `  Y )  e.  (SubGrp `  C )
)  ->  ( M `  Y )  C_  (
( M `  X
)  .+b  ( M `  Y ) ) )
2913, 16, 28syl2anc 665 . . . . . . 7  |-  ( ph  ->  ( M `  Y
)  C_  ( ( M `  X )  .+b  ( M `  Y
) ) )
3029, 23sseqtr4d 3507 . . . . . 6  |-  ( ph  ->  ( M `  Y
)  C_  ( M `  ( `' M `  ( ( M `  X )  .+b  ( M `  Y )
) ) ) )
311, 9, 10, 8, 3, 14, 25mapdord 34915 . . . . . 6  |-  ( ph  ->  ( ( M `  Y )  C_  ( M `  ( `' M `  ( ( M `  X )  .+b  ( M `  Y
) ) ) )  <-> 
Y  C_  ( `' M `  ( ( M `  X )  .+b  ( M `  Y
) ) ) ) )
3230, 31mpbid 213 . . . . 5  |-  ( ph  ->  Y  C_  ( `' M `  ( ( M `  X )  .+b  ( M `  Y
) ) ) )
331, 9, 3dvhlmod 34387 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
3410lsssssubg 18116 . . . . . . . 8  |-  ( U  e.  LMod  ->  S  C_  (SubGrp `  U ) )
3533, 34syl 17 . . . . . . 7  |-  ( ph  ->  S  C_  (SubGrp `  U
) )
3635, 11sseldd 3471 . . . . . 6  |-  ( ph  ->  X  e.  (SubGrp `  U ) )
3735, 14sseldd 3471 . . . . . 6  |-  ( ph  ->  Y  e.  (SubGrp `  U ) )
3835, 25sseldd 3471 . . . . . 6  |-  ( ph  ->  ( `' M `  ( ( M `  X )  .+b  ( M `  Y )
) )  e.  (SubGrp `  U ) )
39 mapdlsm.p . . . . . . 7  |-  .(+)  =  (
LSSum `  U )
4039lsmlub 17250 . . . . . 6  |-  ( ( X  e.  (SubGrp `  U )  /\  Y  e.  (SubGrp `  U )  /\  ( `' M `  ( ( M `  X )  .+b  ( M `  Y )
) )  e.  (SubGrp `  U ) )  -> 
( ( X  C_  ( `' M `  ( ( M `  X ) 
.+b  ( M `  Y ) ) )  /\  Y  C_  ( `' M `  ( ( M `  X ) 
.+b  ( M `  Y ) ) ) )  <->  ( X  .(+)  Y )  C_  ( `' M `  ( ( M `  X )  .+b  ( M `  Y
) ) ) ) )
4136, 37, 38, 40syl3anc 1264 . . . . 5  |-  ( ph  ->  ( ( X  C_  ( `' M `  ( ( M `  X ) 
.+b  ( M `  Y ) ) )  /\  Y  C_  ( `' M `  ( ( M `  X ) 
.+b  ( M `  Y ) ) ) )  <->  ( X  .(+)  Y )  C_  ( `' M `  ( ( M `  X )  .+b  ( M `  Y
) ) ) ) )
4227, 32, 41mpbi2and 929 . . . 4  |-  ( ph  ->  ( X  .(+)  Y ) 
C_  ( `' M `  ( ( M `  X )  .+b  ( M `  Y )
) ) )
4310, 39lsmcl 18241 . . . . . 6  |-  ( ( U  e.  LMod  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .(+)  Y )  e.  S )
4433, 11, 14, 43syl3anc 1264 . . . . 5  |-  ( ph  ->  ( X  .(+)  Y )  e.  S )
451, 9, 10, 8, 3, 44, 25mapdord 34915 . . . 4  |-  ( ph  ->  ( ( M `  ( X  .(+)  Y ) )  C_  ( M `  ( `' M `  ( ( M `  X )  .+b  ( M `  Y )
) ) )  <->  ( X  .(+) 
Y )  C_  ( `' M `  ( ( M `  X ) 
.+b  ( M `  Y ) ) ) ) )
4642, 45mpbird 235 . . 3  |-  ( ph  ->  ( M `  ( X  .(+)  Y ) ) 
C_  ( M `  ( `' M `  ( ( M `  X ) 
.+b  ( M `  Y ) ) ) ) )
4746, 23sseqtrd 3506 . 2  |-  ( ph  ->  ( M `  ( X  .(+)  Y ) ) 
C_  ( ( M `
 X )  .+b  ( M `  Y ) ) )
4839lsmub1 17243 . . . . 5  |-  ( ( X  e.  (SubGrp `  U )  /\  Y  e.  (SubGrp `  U )
)  ->  X  C_  ( X  .(+)  Y ) )
4936, 37, 48syl2anc 665 . . . 4  |-  ( ph  ->  X  C_  ( X  .(+) 
Y ) )
501, 9, 10, 8, 3, 11, 44mapdord 34915 . . . 4  |-  ( ph  ->  ( ( M `  X )  C_  ( M `  ( X  .(+) 
Y ) )  <->  X  C_  ( X  .(+)  Y ) ) )
5149, 50mpbird 235 . . 3  |-  ( ph  ->  ( M `  X
)  C_  ( M `  ( X  .(+)  Y ) ) )
5239lsmub2 17244 . . . . 5  |-  ( ( X  e.  (SubGrp `  U )  /\  Y  e.  (SubGrp `  U )
)  ->  Y  C_  ( X  .(+)  Y ) )
5336, 37, 52syl2anc 665 . . . 4  |-  ( ph  ->  Y  C_  ( X  .(+) 
Y ) )
541, 9, 10, 8, 3, 14, 44mapdord 34915 . . . 4  |-  ( ph  ->  ( ( M `  Y )  C_  ( M `  ( X  .(+) 
Y ) )  <->  Y  C_  ( X  .(+)  Y ) ) )
5553, 54mpbird 235 . . 3  |-  ( ph  ->  ( M `  Y
)  C_  ( M `  ( X  .(+)  Y ) ) )
561, 8, 9, 10, 2, 5, 3, 44mapdcl2 34933 . . . . 5  |-  ( ph  ->  ( M `  ( X  .(+)  Y ) )  e.  ( LSubSp `  C
) )
577, 56sseldd 3471 . . . 4  |-  ( ph  ->  ( M `  ( X  .(+)  Y ) )  e.  (SubGrp `  C
) )
5817lsmlub 17250 . . . 4  |-  ( ( ( M `  X
)  e.  (SubGrp `  C )  /\  ( M `  Y )  e.  (SubGrp `  C )  /\  ( M `  ( X  .(+)  Y ) )  e.  (SubGrp `  C
) )  ->  (
( ( M `  X )  C_  ( M `  ( X  .(+) 
Y ) )  /\  ( M `  Y ) 
C_  ( M `  ( X  .(+)  Y ) ) )  <->  ( ( M `  X )  .+b  ( M `  Y
) )  C_  ( M `  ( X  .(+) 
Y ) ) ) )
5913, 16, 57, 58syl3anc 1264 . . 3  |-  ( ph  ->  ( ( ( M `
 X )  C_  ( M `  ( X 
.(+)  Y ) )  /\  ( M `  Y ) 
C_  ( M `  ( X  .(+)  Y ) ) )  <->  ( ( M `  X )  .+b  ( M `  Y
) )  C_  ( M `  ( X  .(+) 
Y ) ) ) )
6051, 55, 59mpbi2and 929 . 2  |-  ( ph  ->  ( ( M `  X )  .+b  ( M `  Y )
)  C_  ( M `  ( X  .(+)  Y ) ) )
6147, 60eqssd 3487 1  |-  ( ph  ->  ( M `  ( X  .(+)  Y ) )  =  ( ( M `
 X )  .+b  ( M `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    C_ wss 3442   `'ccnv 4853   ` cfv 5601  (class class class)co 6305  SubGrpcsubg 16762   LSSumclsm 17221   LModclmod 18026   LSubSpclss 18090   HLchlt 32625   LHypclh 33258   DVecHcdvh 34355  LCDualclcd 34863  mapdcmpd 34901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-riotaBAD 32234
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-tpos 6981  df-undef 7028  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-sca 15168  df-vsca 15169  df-0g 15299  df-mre 15443  df-mrc 15444  df-acs 15446  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-subg 16765  df-cntz 16922  df-oppg 16948  df-lsm 17223  df-cmn 17367  df-abl 17368  df-mgp 17659  df-ur 17671  df-ring 17717  df-oppr 17786  df-dvdsr 17804  df-unit 17805  df-invr 17835  df-dvr 17846  df-drng 17912  df-lmod 18028  df-lss 18091  df-lsp 18130  df-lvec 18261  df-lsatoms 32251  df-lshyp 32252  df-lcv 32294  df-lfl 32333  df-lkr 32361  df-ldual 32399  df-oposet 32451  df-ol 32453  df-oml 32454  df-covers 32541  df-ats 32542  df-atl 32573  df-cvlat 32597  df-hlat 32626  df-llines 32772  df-lplanes 32773  df-lvols 32774  df-lines 32775  df-psubsp 32777  df-pmap 32778  df-padd 33070  df-lhyp 33262  df-laut 33263  df-ldil 33378  df-ltrn 33379  df-trl 33434  df-tgrp 34019  df-tendo 34031  df-edring 34033  df-dveca 34279  df-disoa 34306  df-dvech 34356  df-dib 34416  df-dic 34450  df-dih 34506  df-doch 34625  df-djh 34672  df-lcdual 34864  df-mapd 34902
This theorem is referenced by:  mapdindp  34948  mapdpglem1  34949  mapdheq4lem  35008  mapdh6lem1N  35010  mapdh6lem2N  35011  hdmap1l6lem1  35085  hdmap1l6lem2  35086  hdmaprnlem3eN  35138
  Copyright terms: Public domain W3C validator