Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdin Structured version   Visualization version   Unicode version

Theorem mapdin 35301
Description: Subspace intersection is preserved by the map defined by df-mapd 35264. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdin.h  |-  H  =  ( LHyp `  K
)
mapdin.m  |-  M  =  ( (mapd `  K
) `  W )
mapdin.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdin.s  |-  S  =  ( LSubSp `  U )
mapdin.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdin.x  |-  ( ph  ->  X  e.  S )
mapdin.y  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
mapdin  |-  ( ph  ->  ( M `  ( X  i^i  Y ) )  =  ( ( M `
 X )  i^i  ( M `  Y
) ) )

Proof of Theorem mapdin
StepHypRef Expression
1 inss1 3643 . . . 4  |-  ( X  i^i  Y )  C_  X
2 mapdin.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 mapdin.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
4 mapdin.s . . . . 5  |-  S  =  ( LSubSp `  U )
5 mapdin.m . . . . 5  |-  M  =  ( (mapd `  K
) `  W )
6 mapdin.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
72, 3, 6dvhlmod 34749 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
8 mapdin.x . . . . . 6  |-  ( ph  ->  X  e.  S )
9 mapdin.y . . . . . 6  |-  ( ph  ->  Y  e.  S )
104lssincl 18266 . . . . . 6  |-  ( ( U  e.  LMod  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  i^i  Y )  e.  S )
117, 8, 9, 10syl3anc 1292 . . . . 5  |-  ( ph  ->  ( X  i^i  Y
)  e.  S )
122, 3, 4, 5, 6, 11, 8mapdord 35277 . . . 4  |-  ( ph  ->  ( ( M `  ( X  i^i  Y ) )  C_  ( M `  X )  <->  ( X  i^i  Y )  C_  X
) )
131, 12mpbiri 241 . . 3  |-  ( ph  ->  ( M `  ( X  i^i  Y ) ) 
C_  ( M `  X ) )
14 inss2 3644 . . . 4  |-  ( X  i^i  Y )  C_  Y
152, 3, 4, 5, 6, 11, 9mapdord 35277 . . . 4  |-  ( ph  ->  ( ( M `  ( X  i^i  Y ) )  C_  ( M `  Y )  <->  ( X  i^i  Y )  C_  Y
) )
1614, 15mpbiri 241 . . 3  |-  ( ph  ->  ( M `  ( X  i^i  Y ) ) 
C_  ( M `  Y ) )
1713, 16ssind 3647 . 2  |-  ( ph  ->  ( M `  ( X  i^i  Y ) ) 
C_  ( ( M `
 X )  i^i  ( M `  Y
) ) )
18 eqid 2471 . . . . 5  |-  ( (LCDual `  K ) `  W
)  =  ( (LCDual `  K ) `  W
)
19 eqid 2471 . . . . . . 7  |-  ( LSubSp `  ( (LCDual `  K
) `  W )
)  =  ( LSubSp `  ( (LCDual `  K
) `  W )
)
202, 5, 3, 4, 18, 19, 6, 8mapdcl2 35295 . . . . . 6  |-  ( ph  ->  ( M `  X
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
212, 5, 18, 19, 6mapdrn2 35290 . . . . . 6  |-  ( ph  ->  ran  M  =  (
LSubSp `  ( (LCDual `  K ) `  W
) ) )
2220, 21eleqtrrd 2552 . . . . 5  |-  ( ph  ->  ( M `  X
)  e.  ran  M
)
232, 5, 3, 4, 18, 19, 6, 9mapdcl2 35295 . . . . . 6  |-  ( ph  ->  ( M `  Y
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
2423, 21eleqtrrd 2552 . . . . 5  |-  ( ph  ->  ( M `  Y
)  e.  ran  M
)
252, 5, 3, 18, 6, 22, 24mapdincl 35300 . . . 4  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  e.  ran  M
)
262, 5, 6, 25mapdcnvid2 35296 . . 3  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  =  ( ( M `  X )  i^i  ( M `  Y ) ) )
27 inss1 3643 . . . . . . 7  |-  ( ( M `  X )  i^i  ( M `  Y ) )  C_  ( M `  X )
2826, 27syl6eqss 3468 . . . . . 6  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  X ) )
292, 18, 6lcdlmod 35231 . . . . . . . . . 10  |-  ( ph  ->  ( (LCDual `  K
) `  W )  e.  LMod )
3019lssincl 18266 . . . . . . . . . 10  |-  ( ( ( (LCDual `  K
) `  W )  e.  LMod  /\  ( M `  X )  e.  (
LSubSp `  ( (LCDual `  K ) `  W
) )  /\  ( M `  Y )  e.  ( LSubSp `  ( (LCDual `  K ) `  W
) ) )  -> 
( ( M `  X )  i^i  ( M `  Y )
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
3129, 20, 23, 30syl3anc 1292 . . . . . . . . 9  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
3231, 21eleqtrrd 2552 . . . . . . . 8  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  e.  ran  M
)
332, 5, 3, 4, 6, 32mapdcnvcl 35291 . . . . . . 7  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  e.  S
)
342, 3, 4, 5, 6, 33, 8mapdord 35277 . . . . . 6  |-  ( ph  ->  ( ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  X )  <->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y
) ) )  C_  X ) )
3528, 34mpbid 215 . . . . 5  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  C_  X
)
362, 5, 6, 32mapdcnvid2 35296 . . . . . . 7  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  =  ( ( M `  X )  i^i  ( M `  Y ) ) )
37 inss2 3644 . . . . . . 7  |-  ( ( M `  X )  i^i  ( M `  Y ) )  C_  ( M `  Y )
3836, 37syl6eqss 3468 . . . . . 6  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  Y ) )
392, 3, 4, 5, 6, 33, 9mapdord 35277 . . . . . 6  |-  ( ph  ->  ( ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  Y )  <->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y
) ) )  C_  Y ) )
4038, 39mpbid 215 . . . . 5  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  C_  Y
)
4135, 40ssind 3647 . . . 4  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  C_  ( X  i^i  Y ) )
422, 3, 4, 5, 6, 33, 11mapdord 35277 . . . 4  |-  ( ph  ->  ( ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  ( X  i^i  Y
) )  <->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y
) ) )  C_  ( X  i^i  Y ) ) )
4341, 42mpbird 240 . . 3  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  ( X  i^i  Y
) ) )
4426, 43eqsstr3d 3453 . 2  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  C_  ( M `  ( X  i^i  Y
) ) )
4517, 44eqssd 3435 1  |-  ( ph  ->  ( M `  ( X  i^i  Y ) )  =  ( ( M `
 X )  i^i  ( M `  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    i^i cin 3389    C_ wss 3390   `'ccnv 4838   ran crn 4840   ` cfv 5589   LModclmod 18169   LSubSpclss 18233   HLchlt 32987   LHypclh 33620   DVecHcdvh 34717  LCDualclcd 35225  mapdcmpd 35263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-riotaBAD 32589
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-tpos 6991  df-undef 7038  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-sca 15284  df-vsca 15285  df-0g 15418  df-mre 15570  df-mrc 15571  df-acs 15573  df-preset 16251  df-poset 16269  df-plt 16282  df-lub 16298  df-glb 16299  df-join 16300  df-meet 16301  df-p0 16363  df-p1 16364  df-lat 16370  df-clat 16432  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-grp 16751  df-minusg 16752  df-sbg 16753  df-subg 16892  df-cntz 17049  df-oppg 17075  df-lsm 17366  df-cmn 17510  df-abl 17511  df-mgp 17802  df-ur 17814  df-ring 17860  df-oppr 17929  df-dvdsr 17947  df-unit 17948  df-invr 17978  df-dvr 17989  df-drng 18055  df-lmod 18171  df-lss 18234  df-lsp 18273  df-lvec 18404  df-lsatoms 32613  df-lshyp 32614  df-lcv 32656  df-lfl 32695  df-lkr 32723  df-ldual 32761  df-oposet 32813  df-ol 32815  df-oml 32816  df-covers 32903  df-ats 32904  df-atl 32935  df-cvlat 32959  df-hlat 32988  df-llines 33134  df-lplanes 33135  df-lvols 33136  df-lines 33137  df-psubsp 33139  df-pmap 33140  df-padd 33432  df-lhyp 33624  df-laut 33625  df-ldil 33740  df-ltrn 33741  df-trl 33796  df-tgrp 34381  df-tendo 34393  df-edring 34395  df-dveca 34641  df-disoa 34668  df-dvech 34718  df-dib 34778  df-dic 34812  df-dih 34868  df-doch 34987  df-djh 35034  df-lcdual 35226  df-mapd 35264
This theorem is referenced by:  mapdheq4lem  35370  mapdh6lem1N  35372  mapdh6lem2N  35373  hdmap1l6lem1  35447  hdmap1l6lem2  35448
  Copyright terms: Public domain W3C validator