Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdin Structured version   Unicode version

Theorem mapdin 34695
Description: Subspace intersection is preserved by the map defined by df-mapd 34658. Part of property (e) in [Baer] p. 40. (Contributed by NM, 12-Apr-2015.)
Hypotheses
Ref Expression
mapdin.h  |-  H  =  ( LHyp `  K
)
mapdin.m  |-  M  =  ( (mapd `  K
) `  W )
mapdin.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdin.s  |-  S  =  ( LSubSp `  U )
mapdin.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdin.x  |-  ( ph  ->  X  e.  S )
mapdin.y  |-  ( ph  ->  Y  e.  S )
Assertion
Ref Expression
mapdin  |-  ( ph  ->  ( M `  ( X  i^i  Y ) )  =  ( ( M `
 X )  i^i  ( M `  Y
) ) )

Proof of Theorem mapdin
StepHypRef Expression
1 inss1 3661 . . . 4  |-  ( X  i^i  Y )  C_  X
2 mapdin.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 mapdin.u . . . . 5  |-  U  =  ( ( DVecH `  K
) `  W )
4 mapdin.s . . . . 5  |-  S  =  ( LSubSp `  U )
5 mapdin.m . . . . 5  |-  M  =  ( (mapd `  K
) `  W )
6 mapdin.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
72, 3, 6dvhlmod 34143 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
8 mapdin.x . . . . . 6  |-  ( ph  ->  X  e.  S )
9 mapdin.y . . . . . 6  |-  ( ph  ->  Y  e.  S )
104lssincl 17933 . . . . . 6  |-  ( ( U  e.  LMod  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  i^i  Y )  e.  S )
117, 8, 9, 10syl3anc 1232 . . . . 5  |-  ( ph  ->  ( X  i^i  Y
)  e.  S )
122, 3, 4, 5, 6, 11, 8mapdord 34671 . . . 4  |-  ( ph  ->  ( ( M `  ( X  i^i  Y ) )  C_  ( M `  X )  <->  ( X  i^i  Y )  C_  X
) )
131, 12mpbiri 235 . . 3  |-  ( ph  ->  ( M `  ( X  i^i  Y ) ) 
C_  ( M `  X ) )
14 inss2 3662 . . . 4  |-  ( X  i^i  Y )  C_  Y
152, 3, 4, 5, 6, 11, 9mapdord 34671 . . . 4  |-  ( ph  ->  ( ( M `  ( X  i^i  Y ) )  C_  ( M `  Y )  <->  ( X  i^i  Y )  C_  Y
) )
1614, 15mpbiri 235 . . 3  |-  ( ph  ->  ( M `  ( X  i^i  Y ) ) 
C_  ( M `  Y ) )
1713, 16ssind 3665 . 2  |-  ( ph  ->  ( M `  ( X  i^i  Y ) ) 
C_  ( ( M `
 X )  i^i  ( M `  Y
) ) )
18 eqid 2404 . . . . 5  |-  ( (LCDual `  K ) `  W
)  =  ( (LCDual `  K ) `  W
)
19 eqid 2404 . . . . . . 7  |-  ( LSubSp `  ( (LCDual `  K
) `  W )
)  =  ( LSubSp `  ( (LCDual `  K
) `  W )
)
202, 5, 3, 4, 18, 19, 6, 8mapdcl2 34689 . . . . . 6  |-  ( ph  ->  ( M `  X
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
212, 5, 18, 19, 6mapdrn2 34684 . . . . . 6  |-  ( ph  ->  ran  M  =  (
LSubSp `  ( (LCDual `  K ) `  W
) ) )
2220, 21eleqtrrd 2495 . . . . 5  |-  ( ph  ->  ( M `  X
)  e.  ran  M
)
232, 5, 3, 4, 18, 19, 6, 9mapdcl2 34689 . . . . . 6  |-  ( ph  ->  ( M `  Y
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
2423, 21eleqtrrd 2495 . . . . 5  |-  ( ph  ->  ( M `  Y
)  e.  ran  M
)
252, 5, 3, 18, 6, 22, 24mapdincl 34694 . . . 4  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  e.  ran  M
)
262, 5, 6, 25mapdcnvid2 34690 . . 3  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  =  ( ( M `  X )  i^i  ( M `  Y ) ) )
27 inss1 3661 . . . . . . 7  |-  ( ( M `  X )  i^i  ( M `  Y ) )  C_  ( M `  X )
2826, 27syl6eqss 3494 . . . . . 6  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  X ) )
292, 18, 6lcdlmod 34625 . . . . . . . . . 10  |-  ( ph  ->  ( (LCDual `  K
) `  W )  e.  LMod )
3019lssincl 17933 . . . . . . . . . 10  |-  ( ( ( (LCDual `  K
) `  W )  e.  LMod  /\  ( M `  X )  e.  (
LSubSp `  ( (LCDual `  K ) `  W
) )  /\  ( M `  Y )  e.  ( LSubSp `  ( (LCDual `  K ) `  W
) ) )  -> 
( ( M `  X )  i^i  ( M `  Y )
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
3129, 20, 23, 30syl3anc 1232 . . . . . . . . 9  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  e.  ( LSubSp `  ( (LCDual `  K
) `  W )
) )
3231, 21eleqtrrd 2495 . . . . . . . 8  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  e.  ran  M
)
332, 5, 3, 4, 6, 32mapdcnvcl 34685 . . . . . . 7  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  e.  S
)
342, 3, 4, 5, 6, 33, 8mapdord 34671 . . . . . 6  |-  ( ph  ->  ( ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  X )  <->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y
) ) )  C_  X ) )
3528, 34mpbid 212 . . . . 5  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  C_  X
)
362, 5, 6, 32mapdcnvid2 34690 . . . . . . 7  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  =  ( ( M `  X )  i^i  ( M `  Y ) ) )
37 inss2 3662 . . . . . . 7  |-  ( ( M `  X )  i^i  ( M `  Y ) )  C_  ( M `  Y )
3836, 37syl6eqss 3494 . . . . . 6  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  Y ) )
392, 3, 4, 5, 6, 33, 9mapdord 34671 . . . . . 6  |-  ( ph  ->  ( ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  Y )  <->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y
) ) )  C_  Y ) )
4038, 39mpbid 212 . . . . 5  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  C_  Y
)
4135, 40ssind 3665 . . . 4  |-  ( ph  ->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y )
) )  C_  ( X  i^i  Y ) )
422, 3, 4, 5, 6, 33, 11mapdord 34671 . . . 4  |-  ( ph  ->  ( ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  ( X  i^i  Y
) )  <->  ( `' M `  ( ( M `  X )  i^i  ( M `  Y
) ) )  C_  ( X  i^i  Y ) ) )
4341, 42mpbird 234 . . 3  |-  ( ph  ->  ( M `  ( `' M `  ( ( M `  X )  i^i  ( M `  Y ) ) ) )  C_  ( M `  ( X  i^i  Y
) ) )
4426, 43eqsstr3d 3479 . 2  |-  ( ph  ->  ( ( M `  X )  i^i  ( M `  Y )
)  C_  ( M `  ( X  i^i  Y
) ) )
4517, 44eqssd 3461 1  |-  ( ph  ->  ( M `  ( X  i^i  Y ) )  =  ( ( M `
 X )  i^i  ( M `  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1407    e. wcel 1844    i^i cin 3415    C_ wss 3416   `'ccnv 4824   ran crn 4826   ` cfv 5571   LModclmod 17834   LSubSpclss 17900   HLchlt 32381   LHypclh 33014   DVecHcdvh 34111  LCDualclcd 34619  mapdcmpd 34657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576  ax-cnex 9580  ax-resscn 9581  ax-1cn 9582  ax-icn 9583  ax-addcl 9584  ax-addrcl 9585  ax-mulcl 9586  ax-mulrcl 9587  ax-mulcom 9588  ax-addass 9589  ax-mulass 9590  ax-distr 9591  ax-i2m1 9592  ax-1ne0 9593  ax-1rid 9594  ax-rnegex 9595  ax-rrecex 9596  ax-cnre 9597  ax-pre-lttri 9598  ax-pre-lttrn 9599  ax-pre-ltadd 9600  ax-pre-mulgt0 9601  ax-riotaBAD 31990
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3or 977  df-3an 978  df-tru 1410  df-fal 1413  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-tp 3979  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-tr 4492  df-eprel 4736  df-id 4740  df-po 4746  df-so 4747  df-fr 4784  df-we 4786  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-pred 5369  df-ord 5415  df-on 5416  df-lim 5417  df-suc 5418  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-riota 6242  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-of 6523  df-om 6686  df-1st 6786  df-2nd 6787  df-tpos 6960  df-undef 7007  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-pnf 9662  df-mnf 9663  df-xr 9664  df-ltxr 9665  df-le 9666  df-sub 9845  df-neg 9846  df-nn 10579  df-2 10637  df-3 10638  df-4 10639  df-5 10640  df-6 10641  df-n0 10839  df-z 10908  df-uz 11130  df-fz 11729  df-struct 14845  df-ndx 14846  df-slot 14847  df-base 14848  df-sets 14849  df-ress 14850  df-plusg 14924  df-mulr 14925  df-sca 14927  df-vsca 14928  df-0g 15058  df-mre 15202  df-mrc 15203  df-acs 15205  df-preset 15883  df-poset 15901  df-plt 15914  df-lub 15930  df-glb 15931  df-join 15932  df-meet 15933  df-p0 15995  df-p1 15996  df-lat 16002  df-clat 16064  df-mgm 16198  df-sgrp 16237  df-mnd 16247  df-submnd 16293  df-grp 16383  df-minusg 16384  df-sbg 16385  df-subg 16524  df-cntz 16681  df-oppg 16707  df-lsm 16982  df-cmn 17126  df-abl 17127  df-mgp 17464  df-ur 17476  df-ring 17522  df-oppr 17594  df-dvdsr 17612  df-unit 17613  df-invr 17643  df-dvr 17654  df-drng 17720  df-lmod 17836  df-lss 17901  df-lsp 17940  df-lvec 18071  df-lsatoms 32007  df-lshyp 32008  df-lcv 32050  df-lfl 32089  df-lkr 32117  df-ldual 32155  df-oposet 32207  df-ol 32209  df-oml 32210  df-covers 32297  df-ats 32298  df-atl 32329  df-cvlat 32353  df-hlat 32382  df-llines 32528  df-lplanes 32529  df-lvols 32530  df-lines 32531  df-psubsp 32533  df-pmap 32534  df-padd 32826  df-lhyp 33018  df-laut 33019  df-ldil 33134  df-ltrn 33135  df-trl 33190  df-tgrp 33775  df-tendo 33787  df-edring 33789  df-dveca 34035  df-disoa 34062  df-dvech 34112  df-dib 34172  df-dic 34206  df-dih 34262  df-doch 34381  df-djh 34428  df-lcdual 34620  df-mapd 34658
This theorem is referenced by:  mapdheq4lem  34764  mapdh6lem1N  34766  mapdh6lem2N  34767  hdmap1l6lem1  34841  hdmap1l6lem2  34842
  Copyright terms: Public domain W3C validator