Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8ab Structured version   Unicode version

Theorem mapdh8ab 36975
Description: Part of Part (8) in [Baer] p. 48. (Contributed by NM, 13-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h  |-  H  =  ( LHyp `  K
)
mapdh8a.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh8a.v  |-  V  =  ( Base `  U
)
mapdh8a.s  |-  .-  =  ( -g `  U )
mapdh8a.o  |-  .0.  =  ( 0g `  U )
mapdh8a.n  |-  N  =  ( LSpan `  U )
mapdh8a.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh8a.d  |-  D  =  ( Base `  C
)
mapdh8a.r  |-  R  =  ( -g `  C
)
mapdh8a.q  |-  Q  =  ( 0g `  C
)
mapdh8a.j  |-  J  =  ( LSpan `  C )
mapdh8a.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh8a.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh8a.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdh8ab.f  |-  ( ph  ->  F  e.  D )
mapdh8ab.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdh8ab.eg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
mapdh8ab.ee  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
mapdh8ab.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh8ab.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdh8ab.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdh8ab.t  |-  ( ph  ->  T  e.  ( V 
\  {  .0.  }
) )
mapdh8ab.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
mapdh8ab.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh8ab.yn  |-  ( ph  ->  ( N `  { X } )  =  ( N `  { T } ) )
Assertion
Ref Expression
mapdh8ab  |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `
 <. Z ,  E ,  T >. ) )
Distinct variable groups:    x, h,  .-    .0. , h, x    C, h    D, h, x    h, F, x    h, I    h, G, x    h, J, x   
h, M, x    h, N, x    ph, h    R, h, x    x, Q    T, h, x    U, h    h, X, x    h, Y, x   
h, E, x    h, Z, x
Allowed substitution hints:    ph( x)    C( x)    Q( h)    U( x)    H( x, h)    I( x)    K( x, h)    V( x, h)    W( x, h)

Proof of Theorem mapdh8ab
StepHypRef Expression
1 mapdh8a.h . 2  |-  H  =  ( LHyp `  K
)
2 mapdh8a.u . 2  |-  U  =  ( ( DVecH `  K
) `  W )
3 mapdh8a.v . 2  |-  V  =  ( Base `  U
)
4 mapdh8a.s . 2  |-  .-  =  ( -g `  U )
5 mapdh8a.o . 2  |-  .0.  =  ( 0g `  U )
6 mapdh8a.n . 2  |-  N  =  ( LSpan `  U )
7 mapdh8a.c . 2  |-  C  =  ( (LCDual `  K
) `  W )
8 mapdh8a.d . 2  |-  D  =  ( Base `  C
)
9 mapdh8a.r . 2  |-  R  =  ( -g `  C
)
10 mapdh8a.q . 2  |-  Q  =  ( 0g `  C
)
11 mapdh8a.j . 2  |-  J  =  ( LSpan `  C )
12 mapdh8a.m . 2  |-  M  =  ( (mapd `  K
) `  W )
13 mapdh8a.i . 2  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
14 mapdh8a.k . 2  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
15 mapdh8ab.f . 2  |-  ( ph  ->  F  e.  D )
16 mapdh8ab.mn . 2  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
17 mapdh8ab.eg . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
18 mapdh8ab.ee . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
19 mapdh8ab.x . 2  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
20 mapdh8ab.y . 2  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
21 mapdh8ab.z . 2  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
221, 2, 14dvhlvec 36307 . . . . . 6  |-  ( ph  ->  U  e.  LVec )
2319eldifad 3493 . . . . . 6  |-  ( ph  ->  X  e.  V )
2420eldifad 3493 . . . . . 6  |-  ( ph  ->  Y  e.  V )
2521eldifad 3493 . . . . . 6  |-  ( ph  ->  Z  e.  V )
26 mapdh8ab.xn . . . . . 6  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
273, 6, 22, 23, 24, 25, 26lspindpi 17649 . . . . 5  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  ( N `  { X } )  =/=  ( N `  { Z } ) ) )
2827simprd 463 . . . 4  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
2928necomd 2738 . . 3  |-  ( ph  ->  ( N `  { Z } )  =/=  ( N `  { X } ) )
30 mapdh8ab.yn . . 3  |-  ( ph  ->  ( N `  { X } )  =  ( N `  { T } ) )
3129, 30neeqtrd 2762 . 2  |-  ( ph  ->  ( N `  { Z } )  =/=  ( N `  { T } ) )
32 mapdh8ab.t . 2  |-  ( ph  ->  T  e.  ( V 
\  {  .0.  }
) )
3330sseq1d 3536 . . . . 5  |-  ( ph  ->  ( ( N `  { X } )  C_  ( N `  { Y ,  Z } )  <->  ( N `  { T } ) 
C_  ( N `  { Y ,  Z }
) ) )
34 eqid 2467 . . . . . 6  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
351, 2, 14dvhlmod 36308 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
363, 34, 6, 35, 24, 25lspprcl 17495 . . . . . 6  |-  ( ph  ->  ( N `  { Y ,  Z }
)  e.  ( LSubSp `  U ) )
373, 34, 6, 35, 36, 23lspsnel5 17512 . . . . 5  |-  ( ph  ->  ( X  e.  ( N `  { Y ,  Z } )  <->  ( N `  { X } ) 
C_  ( N `  { Y ,  Z }
) ) )
3832eldifad 3493 . . . . . 6  |-  ( ph  ->  T  e.  V )
393, 34, 6, 35, 36, 38lspsnel5 17512 . . . . 5  |-  ( ph  ->  ( T  e.  ( N `  { Y ,  Z } )  <->  ( N `  { T } ) 
C_  ( N `  { Y ,  Z }
) ) )
4033, 37, 393bitr4d 285 . . . 4  |-  ( ph  ->  ( X  e.  ( N `  { Y ,  Z } )  <->  T  e.  ( N `  { Y ,  Z } ) ) )
4126, 40mtbid 300 . . 3  |-  ( ph  ->  -.  T  e.  ( N `  { Y ,  Z } ) )
4222adantr 465 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  U  e.  LVec )
4320adantr 465 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  Y  e.  ( V  \  {  .0.  } ) )
4438adantr 465 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  T  e.  V
)
4525adantr 465 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  Z  e.  V
)
46 mapdh8ab.yz . . . . 5  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
4746adantr 465 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
48 simpr 461 . . . . 5  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  Y  e.  ( N `  { Z ,  T } ) )
49 prcom 4111 . . . . . 6  |-  { Z ,  T }  =  { T ,  Z }
5049fveq2i 5875 . . . . 5  |-  ( N `
 { Z ,  T } )  =  ( N `  { T ,  Z } )
5148, 50syl6eleq 2565 . . . 4  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  Y  e.  ( N `  { T ,  Z } ) )
523, 5, 6, 42, 43, 44, 45, 47, 51lspexch 17646 . . 3  |-  ( (
ph  /\  Y  e.  ( N `  { Z ,  T } ) )  ->  T  e.  ( N `  { Y ,  Z } ) )
5341, 52mtand 659 . 2  |-  ( ph  ->  -.  Y  e.  ( N `  { Z ,  T } ) )
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 31, 32, 53, 26mapdh8aa 36974 1  |-  ( ph  ->  ( I `  <. Y ,  G ,  T >. )  =  ( I `
 <. Z ,  E ,  T >. ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3118    \ cdif 3478    C_ wss 3481   ifcif 3945   {csn 4033   {cpr 4035   <.cotp 4041    |-> cmpt 4511   ` cfv 5594   iota_crio 6255  (class class class)co 6295   1stc1st 6793   2ndc2nd 6794   Basecbs 14507   0gc0g 14712   -gcsg 15927   LSubSpclss 17449   LSpanclspn 17488   LVecclvec 17619   HLchlt 34548   LHypclh 35181   DVecHcdvh 36276  LCDualclcd 36784  mapdcmpd 36822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-riotaBAD 34157
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-ot 4042  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-tpos 6967  df-undef 7014  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-sca 14588  df-vsca 14589  df-0g 14714  df-mre 14858  df-mrc 14859  df-acs 14861  df-poset 15450  df-plt 15462  df-lub 15478  df-glb 15479  df-join 15480  df-meet 15481  df-p0 15543  df-p1 15544  df-lat 15550  df-clat 15612  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-grp 15929  df-minusg 15930  df-sbg 15931  df-subg 16070  df-cntz 16227  df-oppg 16253  df-lsm 16529  df-cmn 16673  df-abl 16674  df-mgp 17014  df-ur 17026  df-ring 17072  df-oppr 17144  df-dvdsr 17162  df-unit 17163  df-invr 17193  df-dvr 17204  df-drng 17269  df-lmod 17385  df-lss 17450  df-lsp 17489  df-lvec 17620  df-lsatoms 34174  df-lshyp 34175  df-lcv 34217  df-lfl 34256  df-lkr 34284  df-ldual 34322  df-oposet 34374  df-ol 34376  df-oml 34377  df-covers 34464  df-ats 34465  df-atl 34496  df-cvlat 34520  df-hlat 34549  df-llines 34695  df-lplanes 34696  df-lvols 34697  df-lines 34698  df-psubsp 34700  df-pmap 34701  df-padd 34993  df-lhyp 35185  df-laut 35186  df-ldil 35301  df-ltrn 35302  df-trl 35356  df-tgrp 35940  df-tendo 35952  df-edring 35954  df-dveca 36200  df-disoa 36227  df-dvech 36277  df-dib 36337  df-dic 36371  df-dih 36427  df-doch 36546  df-djh 36593  df-lcdual 36785  df-mapd 36823
This theorem is referenced by:  mapdh8ac  36976
  Copyright terms: Public domain W3C validator