Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6lem2N Unicode version

Theorem mapdh6lem2N 32217
Description: Lemma for mapdh6N 32230. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh.p  |-  .+  =  ( +g  `  U )
mapdh.a  |-  .+b  =  ( +g  `  C )
mapdhe6.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdhe6.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdhe6.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
mapdh6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
mapdh6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
mapdh6lem2N  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `  { ( G  .+b  E ) } ) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    h, G, x   
h, E    h, Z, x   
.+b , h    h, I    .+ , h, x
Allowed substitution hints:    ph( x)    C( x)   
.+b ( x)    Q( h)    U( x)    E( x)    H( x, h)    I( x)    K( x, h)    V( x, h)    W( x, h)

Proof of Theorem mapdh6lem2N
StepHypRef Expression
1 mapdh.h . . . 4  |-  H  =  ( LHyp `  K
)
2 mapdh.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
3 mapdh.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
4 eqid 2404 . . . 4  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
5 mapdh.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
61, 3, 5dvhlmod 31593 . . . . 5  |-  ( ph  ->  U  e.  LMod )
7 mapdhe6.y . . . . . . 7  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
87eldifad 3292 . . . . . 6  |-  ( ph  ->  Y  e.  V )
9 mapdh.v . . . . . . 7  |-  V  =  ( Base `  U
)
10 mapdh.n . . . . . . 7  |-  N  =  ( LSpan `  U )
119, 4, 10lspsncl 16008 . . . . . 6  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
126, 8, 11syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
13 mapdhe6.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
1413eldifad 3292 . . . . . 6  |-  ( ph  ->  Z  e.  V )
159, 4, 10lspsncl 16008 . . . . . 6  |-  ( ( U  e.  LMod  /\  Z  e.  V )  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
166, 14, 15syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { Z } )  e.  (
LSubSp `  U ) )
17 eqid 2404 . . . . . 6  |-  ( LSSum `  U )  =  (
LSSum `  U )
184, 17lsmcl 16110 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { Y } )  e.  (
LSubSp `  U )  /\  ( N `  { Z } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { Y }
) ( LSSum `  U
) ( N `  { Z } ) )  e.  ( LSubSp `  U
) )
196, 12, 16, 18syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  e.  ( LSubSp `  U )
)
20 mapdhcl.x . . . . . . . 8  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
2120eldifad 3292 . . . . . . 7  |-  ( ph  ->  X  e.  V )
22 mapdh.p . . . . . . . . 9  |-  .+  =  ( +g  `  U )
239, 22lmodvacl 15919 . . . . . . . 8  |-  ( ( U  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .+  Z )  e.  V )
246, 8, 14, 23syl3anc 1184 . . . . . . 7  |-  ( ph  ->  ( Y  .+  Z
)  e.  V )
25 mapdh.s . . . . . . . 8  |-  .-  =  ( -g `  U )
269, 25lmodvsubcl 15944 . . . . . . 7  |-  ( ( U  e.  LMod  /\  X  e.  V  /\  ( Y  .+  Z )  e.  V )  ->  ( X  .-  ( Y  .+  Z ) )  e.  V )
276, 21, 24, 26syl3anc 1184 . . . . . 6  |-  ( ph  ->  ( X  .-  ( Y  .+  Z ) )  e.  V )
289, 4, 10lspsncl 16008 . . . . . 6  |-  ( ( U  e.  LMod  /\  ( X  .-  ( Y  .+  Z ) )  e.  V )  ->  ( N `  { ( X  .-  ( Y  .+  Z ) ) } )  e.  ( LSubSp `  U ) )
296, 27, 28syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  {
( X  .-  ( Y  .+  Z ) ) } )  e.  (
LSubSp `  U ) )
309, 4, 10lspsncl 16008 . . . . . 6  |-  ( ( U  e.  LMod  /\  X  e.  V )  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
316, 21, 30syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  { X } )  e.  (
LSubSp `  U ) )
324, 17lsmcl 16110 . . . . 5  |-  ( ( U  e.  LMod  /\  ( N `  { ( X  .-  ( Y  .+  Z ) ) } )  e.  ( LSubSp `  U )  /\  ( N `  { X } )  e.  (
LSubSp `  U ) )  ->  ( ( N `
 { ( X 
.-  ( Y  .+  Z ) ) } ) ( LSSum `  U
) ( N `  { X } ) )  e.  ( LSubSp `  U
) )
336, 29, 31, 32syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) )  e.  ( LSubSp `  U )
)
341, 2, 3, 4, 5, 19, 33mapdin 32145 . . 3  |-  ( ph  ->  ( M `  (
( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) ) ) )  =  ( ( M `  ( ( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  i^i  ( M `  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) ) ) )
35 mapdh.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
36 eqid 2404 . . . . . 6  |-  ( LSSum `  C )  =  (
LSSum `  C )
371, 2, 3, 4, 17, 35, 36, 5, 12, 16mapdlsm 32147 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  =  ( ( M `  ( N `  { Y } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) ) )
38 mapdh6.fg . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
39 mapdh.q . . . . . . . . 9  |-  Q  =  ( 0g `  C
)
40 mapdh.i . . . . . . . . 9  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
41 mapdhc.o . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
42 mapdh.d . . . . . . . . 9  |-  D  =  ( Base `  C
)
43 mapdh.r . . . . . . . . 9  |-  R  =  ( -g `  C
)
44 mapdh.j . . . . . . . . 9  |-  J  =  ( LSpan `  C )
45 mapdhc.f . . . . . . . . 9  |-  ( ph  ->  F  e.  D )
46 mapdh.mn . . . . . . . . 9  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
471, 3, 5dvhlvec 31592 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LVec )
48 mapdh6.yz . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
49 mapdhe6.xn . . . . . . . . . . . . 13  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
509, 41, 10, 47, 8, 13, 21, 48, 49lspindp2 16162 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
5150simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
5239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 8, 51mapdhcl 32210 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
5338, 52eqeltrrd 2479 . . . . . . . . 9  |-  ( ph  ->  G  e.  D )
5439, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 7, 53, 51mapdheq 32211 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  =  G  <-> 
( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) ) )
5538, 54mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) )  =  ( J `  { G } )  /\  ( M `  ( N `  { ( X  .-  Y ) } ) )  =  ( J `
 { ( F R G ) } ) ) )
5655simpld 446 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Y } ) )  =  ( J `  { G } ) )
57 mapdh6.fe . . . . . . . 8  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
589, 41, 10, 47, 7, 14, 21, 48, 49lspindp1 16160 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
5958simpld 446 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
6039, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 14, 59mapdhcl 32210 . . . . . . . . . 10  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
6157, 60eqeltrrd 2479 . . . . . . . . 9  |-  ( ph  ->  E  e.  D )
6239, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 13, 61, 59mapdheq 32211 . . . . . . . 8  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Z >. )  =  E  <-> 
( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) ) )
6357, 62mpbid 202 . . . . . . 7  |-  ( ph  ->  ( ( M `  ( N `  { Z } ) )  =  ( J `  { E } )  /\  ( M `  ( N `  { ( X  .-  Z ) } ) )  =  ( J `
 { ( F R E ) } ) ) )
6463simpld 446 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { Z } ) )  =  ( J `  { E } ) )
6556, 64oveq12d 6058 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { Y } ) ) (
LSSum `  C ) ( M `  ( N `
 { Z }
) ) )  =  ( ( J `  { G } ) (
LSSum `  C ) ( J `  { E } ) ) )
6637, 65eqtrd 2436 . . . 4  |-  ( ph  ->  ( M `  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )  =  ( ( J `  { G } ) (
LSSum `  C ) ( J `  { E } ) ) )
671, 2, 3, 4, 17, 35, 36, 5, 29, 31mapdlsm 32147 . . . . 5  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) )  =  ( ( M `  ( N `  { ( X  .-  ( Y 
.+  Z ) ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { X }
) ) ) )
68 mapdh.a . . . . . . 7  |-  .+b  =  ( +g  `  C )
6939, 40, 1, 2, 3, 9, 25, 41, 10, 35, 42, 43, 44, 5, 45, 46, 20, 22, 68, 7, 13, 49, 48, 38, 57mapdh6lem1N 32216 . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( G 
.+b  E ) ) } ) )
7069, 46oveq12d 6058 . . . . 5  |-  ( ph  ->  ( ( M `  ( N `  { ( X  .-  ( Y 
.+  Z ) ) } ) ) (
LSSum `  C ) ( M `  ( N `
 { X }
) ) )  =  ( ( J `  { ( F R ( G  .+b  E
) ) } ) ( LSSum `  C )
( J `  { F } ) ) )
7167, 70eqtrd 2436 . . . 4  |-  ( ph  ->  ( M `  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) )  =  ( ( J `  { ( F R ( G  .+b  E
) ) } ) ( LSSum `  C )
( J `  { F } ) ) )
7266, 71ineq12d 3503 . . 3  |-  ( ph  ->  ( ( M `  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) ) )  i^i  ( M `  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) ) ) )  =  ( ( ( J `  { G } ) ( LSSum `  C ) ( J `
 { E }
) )  i^i  (
( J `  {
( F R ( G  .+b  E )
) } ) (
LSSum `  C ) ( J `  { F } ) ) ) )
7334, 72eqtrd 2436 . 2  |-  ( ph  ->  ( M `  (
( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) )  i^i  ( ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) (
LSSum `  U ) ( N `  { X } ) ) ) )  =  ( ( ( J `  { G } ) ( LSSum `  C ) ( J `
 { E }
) )  i^i  (
( J `  {
( F R ( G  .+b  E )
) } ) (
LSSum `  C ) ( J `  { F } ) ) ) )
749, 25, 41, 17, 10, 47, 21, 49, 48, 7, 13, 22baerlem5b 32198 . . 3  |-  ( ph  ->  ( N `  {
( Y  .+  Z
) } )  =  ( ( ( N `
 { Y }
) ( LSSum `  U
) ( N `  { Z } ) )  i^i  ( ( N `
 { ( X 
.-  ( Y  .+  Z ) ) } ) ( LSSum `  U
) ( N `  { X } ) ) ) )
7574fveq2d 5691 . 2  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( M `  ( ( ( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) )  i^i  (
( N `  {
( X  .-  ( Y  .+  Z ) ) } ) ( LSSum `  U ) ( N `
 { X }
) ) ) ) )
761, 35, 5lcdlvec 32074 . . 3  |-  ( ph  ->  C  e.  LVec )
771, 2, 3, 9, 10, 35, 42, 44, 5, 45, 46, 21, 8, 53, 56, 14, 61, 64, 49mapdindp 32154 . . 3  |-  ( ph  ->  -.  F  e.  ( J `  { G ,  E } ) )
781, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 8, 14, 61, 64, 48mapdncol 32153 . . 3  |-  ( ph  ->  ( J `  { G } )  =/=  ( J `  { E } ) )
791, 2, 3, 9, 10, 35, 42, 44, 5, 53, 56, 41, 39, 7mapdn0 32152 . . 3  |-  ( ph  ->  G  e.  ( D 
\  { Q }
) )
801, 2, 3, 9, 10, 35, 42, 44, 5, 61, 64, 41, 39, 13mapdn0 32152 . . 3  |-  ( ph  ->  E  e.  ( D 
\  { Q }
) )
8142, 43, 39, 36, 44, 76, 45, 77, 78, 79, 80, 68baerlem5b 32198 . 2  |-  ( ph  ->  ( J `  {
( G  .+b  E
) } )  =  ( ( ( J `
 { G }
) ( LSSum `  C
) ( J `  { E } ) )  i^i  ( ( J `
 { ( F R ( G  .+b  E ) ) } ) ( LSSum `  C )
( J `  { F } ) ) ) )
8273, 75, 813eqtr4d 2446 1  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `  { ( G  .+b  E ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721    =/= wne 2567   _Vcvv 2916    \ cdif 3277    i^i cin 3279   ifcif 3699   {csn 3774   {cpr 3775   <.cotp 3778    e. cmpt 4226   ` cfv 5413  (class class class)co 6040   1stc1st 6306   2ndc2nd 6307   iota_crio 6501   Basecbs 13424   +g cplusg 13484   0gc0g 13678   -gcsg 14643   LSSumclsm 15223   LModclmod 15905   LSubSpclss 15963   LSpanclspn 16002   HLchlt 29833   LHypclh 30466   DVecHcdvh 31561  LCDualclcd 32069  mapdcmpd 32107
This theorem is referenced by:  mapdh6aN  32218
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-ot 3784  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-tpos 6438  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-mre 13766  df-mrc 13767  df-acs 13769  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-cntz 15071  df-oppg 15097  df-lsm 15225  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-drng 15792  df-lmod 15907  df-lss 15964  df-lsp 16003  df-lvec 16130  df-lsatoms 29459  df-lshyp 29460  df-lcv 29502  df-lfl 29541  df-lkr 29569  df-ldual 29607  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tgrp 31225  df-tendo 31237  df-edring 31239  df-dveca 31485  df-disoa 31512  df-dvech 31562  df-dib 31622  df-dic 31656  df-dih 31712  df-doch 31831  df-djh 31878  df-lcdual 32070  df-mapd 32108
  Copyright terms: Public domain W3C validator