Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6gN Structured version   Unicode version

Theorem mapdh6gN 35385
Description: Lemmma for mapdh6N 35390. Part (6) of [Baer] p. 47 line 39. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh.p  |-  .+  =  ( +g  `  U )
mapdh.a  |-  .+b  =  ( +g  `  C )
mapdh6d.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh6d.yz  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
mapdh6d.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdh6d.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdh6d.w  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
mapdh6d.wn  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
Assertion
Ref Expression
mapdh6gN  |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    w, h    h, Z, x    .+b , h    h, I, x    .+ , h, x   
x, w
Allowed substitution hints:    ph( x, w)    C( x, w)    D( w)    .+ ( w)    .+b ( x, w)    Q( w, h)    R( w)    U( x, w)    F( w)    H( x, w, h)    I( w)    J( w)    K( x, w, h)    M( w)    .- ( w)    N( w)    V( x, w, h)    W( x, w, h)    X( w)    Y( w)    .0. ( w)    Z( w)

Proof of Theorem mapdh6gN
StepHypRef Expression
1 mapdh.q . . 3  |-  Q  =  ( 0g `  C
)
2 mapdh.i . . 3  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
3 mapdh.h . . 3  |-  H  =  ( LHyp `  K
)
4 mapdh.m . . 3  |-  M  =  ( (mapd `  K
) `  W )
5 mapdh.u . . 3  |-  U  =  ( ( DVecH `  K
) `  W )
6 mapdh.v . . 3  |-  V  =  ( Base `  U
)
7 mapdh.s . . 3  |-  .-  =  ( -g `  U )
8 mapdhc.o . . 3  |-  .0.  =  ( 0g `  U )
9 mapdh.n . . 3  |-  N  =  ( LSpan `  U )
10 mapdh.c . . 3  |-  C  =  ( (LCDual `  K
) `  W )
11 mapdh.d . . 3  |-  D  =  ( Base `  C
)
12 mapdh.r . . 3  |-  R  =  ( -g `  C
)
13 mapdh.j . . 3  |-  J  =  ( LSpan `  C )
14 mapdh.k . . 3  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
15 mapdhc.f . . 3  |-  ( ph  ->  F  e.  D )
16 mapdh.mn . . 3  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
17 mapdhcl.x . . 3  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
18 mapdh.p . . 3  |-  .+  =  ( +g  `  U )
19 mapdh.a . . 3  |-  .+b  =  ( +g  `  C )
20 mapdh6d.xn . . 3  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
21 mapdh6d.yz . . 3  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
22 mapdh6d.y . . 3  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
23 mapdh6d.z . . 3  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
24 mapdh6d.w . . 3  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
25 mapdh6d.wn . . 3  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6dN 35382 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  ( Y 
.+  Z ) )
>. )  =  (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )
) )
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6eN 35383 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  ( ( w  .+  Y
)  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  ( w  .+  Y ) >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
283, 5, 14dvhlmod 34753 . . . . . 6  |-  ( ph  ->  U  e.  LMod )
2924eldifad 3339 . . . . . 6  |-  ( ph  ->  w  e.  V )
3022eldifad 3339 . . . . . 6  |-  ( ph  ->  Y  e.  V )
3123eldifad 3339 . . . . . 6  |-  ( ph  ->  Z  e.  V )
326, 18lmodass 16962 . . . . . 6  |-  ( ( U  e.  LMod  /\  (
w  e.  V  /\  Y  e.  V  /\  Z  e.  V )
)  ->  ( (
w  .+  Y )  .+  Z )  =  ( w  .+  ( Y 
.+  Z ) ) )
3328, 29, 30, 31, 32syl13anc 1220 . . . . 5  |-  ( ph  ->  ( ( w  .+  Y )  .+  Z
)  =  ( w 
.+  ( Y  .+  Z ) ) )
3433oteq3d 4072 . . . 4  |-  ( ph  -> 
<. X ,  F , 
( ( w  .+  Y )  .+  Z
) >.  =  <. X ,  F ,  ( w  .+  ( Y  .+  Z
) ) >. )
3534fveq2d 5694 . . 3  |-  ( ph  ->  ( I `  <. X ,  F ,  ( ( w  .+  Y
)  .+  Z ) >. )  =  ( I `
 <. X ,  F ,  ( w  .+  ( Y  .+  Z ) ) >. ) )
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6fN 35384 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  Y )
>. )  =  (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) ) )
3736oveq1d 6105 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  F , 
( w  .+  Y
) >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  =  ( ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
3827, 35, 373eqtr3d 2482 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  ( Y 
.+  Z ) )
>. )  =  (
( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
3926, 38eqtr3d 2476 1  |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. )  .+b  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)  =  ( ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  Y >. ) )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   _Vcvv 2971    \ cdif 3324   ifcif 3790   {csn 3876   {cpr 3878   <.cotp 3884    e. cmpt 4349   ` cfv 5417   iota_crio 6050  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575   Basecbs 14173   +g cplusg 14237   0gc0g 14377   -gcsg 15412   LModclmod 16947   LSpanclspn 17051   HLchlt 32993   LHypclh 33626   DVecHcdvh 34721  LCDualclcd 35229  mapdcmpd 35267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4402  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371  ax-cnex 9337  ax-resscn 9338  ax-1cn 9339  ax-icn 9340  ax-addcl 9341  ax-addrcl 9342  ax-mulcl 9343  ax-mulrcl 9344  ax-mulcom 9345  ax-addass 9346  ax-mulass 9347  ax-distr 9348  ax-i2m1 9349  ax-1ne0 9350  ax-1rid 9351  ax-rnegex 9352  ax-rrecex 9353  ax-cnre 9354  ax-pre-lttri 9355  ax-pre-lttrn 9356  ax-pre-ltadd 9357  ax-pre-mulgt0 9358  ax-riotaBAD 32602
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-pss 3343  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-tp 3881  df-op 3883  df-ot 3885  df-uni 4091  df-int 4128  df-iun 4172  df-iin 4173  df-br 4292  df-opab 4350  df-mpt 4351  df-tr 4385  df-eprel 4631  df-id 4635  df-po 4640  df-so 4641  df-fr 4678  df-we 4680  df-ord 4721  df-on 4722  df-lim 4723  df-suc 4724  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5380  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-riota 6051  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-tpos 6744  df-undef 6791  df-recs 6831  df-rdg 6865  df-1o 6919  df-oadd 6923  df-er 7100  df-map 7215  df-en 7310  df-dom 7311  df-sdom 7312  df-fin 7313  df-pnf 9419  df-mnf 9420  df-xr 9421  df-ltxr 9422  df-le 9423  df-sub 9596  df-neg 9597  df-nn 10322  df-2 10379  df-3 10380  df-4 10381  df-5 10382  df-6 10383  df-n0 10579  df-z 10646  df-uz 10861  df-fz 11437  df-struct 14175  df-ndx 14176  df-slot 14177  df-base 14178  df-sets 14179  df-ress 14180  df-plusg 14250  df-mulr 14251  df-sca 14253  df-vsca 14254  df-0g 14379  df-mre 14523  df-mrc 14524  df-acs 14526  df-poset 15115  df-plt 15127  df-lub 15143  df-glb 15144  df-join 15145  df-meet 15146  df-p0 15208  df-p1 15209  df-lat 15215  df-clat 15277  df-mnd 15414  df-submnd 15464  df-grp 15544  df-minusg 15545  df-sbg 15546  df-subg 15677  df-cntz 15834  df-oppg 15860  df-lsm 16134  df-cmn 16278  df-abl 16279  df-mgp 16591  df-ur 16603  df-rng 16646  df-oppr 16714  df-dvdsr 16732  df-unit 16733  df-invr 16763  df-dvr 16774  df-drng 16833  df-lmod 16949  df-lss 17013  df-lsp 17052  df-lvec 17183  df-lsatoms 32619  df-lshyp 32620  df-lcv 32662  df-lfl 32701  df-lkr 32729  df-ldual 32767  df-oposet 32819  df-ol 32821  df-oml 32822  df-covers 32909  df-ats 32910  df-atl 32941  df-cvlat 32965  df-hlat 32994  df-llines 33140  df-lplanes 33141  df-lvols 33142  df-lines 33143  df-psubsp 33145  df-pmap 33146  df-padd 33438  df-lhyp 33630  df-laut 33631  df-ldil 33746  df-ltrn 33747  df-trl 33801  df-tgrp 34385  df-tendo 34397  df-edring 34399  df-dveca 34645  df-disoa 34672  df-dvech 34722  df-dib 34782  df-dic 34816  df-dih 34872  df-doch 34991  df-djh 35038  df-lcdual 35230  df-mapd 35268
This theorem is referenced by:  mapdh6hN  35386
  Copyright terms: Public domain W3C validator