Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6eN Structured version   Visualization version   Unicode version

Theorem mapdh6eN 35308
Description: Lemmma for mapdh6N 35315. Part (6) in [Baer] p. 47 line 38. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh.p  |-  .+  =  ( +g  `  U )
mapdh.a  |-  .+b  =  ( +g  `  C )
mapdh6d.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh6d.yz  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
mapdh6d.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdh6d.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdh6d.w  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
mapdh6d.wn  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
Assertion
Ref Expression
mapdh6eN  |-  ( ph  ->  ( I `  <. X ,  F ,  ( ( w  .+  Y
)  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  ( w  .+  Y ) >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    w, h    h, Z, x    .+b , h    h, I, x    .+ , h, x   
x, w
Allowed substitution hints:    ph( x, w)    C( x, w)    D( w)    .+ ( w)    .+b ( x, w)    Q( w, h)    R( w)    U( x, w)    F( w)    H( x, w, h)    I( w)    J( w)    K( x, w, h)    M( w)    .- ( w)    N( w)    V( x, w, h)    W( x, w, h)    X( w)    Y( w)    .0. ( w)    Z( w)

Proof of Theorem mapdh6eN
StepHypRef Expression
1 mapdh.q . 2  |-  Q  =  ( 0g `  C
)
2 mapdh.i . 2  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
3 mapdh.h . 2  |-  H  =  ( LHyp `  K
)
4 mapdh.m . 2  |-  M  =  ( (mapd `  K
) `  W )
5 mapdh.u . 2  |-  U  =  ( ( DVecH `  K
) `  W )
6 mapdh.v . 2  |-  V  =  ( Base `  U
)
7 mapdh.s . 2  |-  .-  =  ( -g `  U )
8 mapdhc.o . 2  |-  .0.  =  ( 0g `  U )
9 mapdh.n . 2  |-  N  =  ( LSpan `  U )
10 mapdh.c . 2  |-  C  =  ( (LCDual `  K
) `  W )
11 mapdh.d . 2  |-  D  =  ( Base `  C
)
12 mapdh.r . 2  |-  R  =  ( -g `  C
)
13 mapdh.j . 2  |-  J  =  ( LSpan `  C )
14 mapdh.k . 2  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
15 mapdhc.f . 2  |-  ( ph  ->  F  e.  D )
16 mapdh.mn . 2  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
17 mapdhcl.x . 2  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
18 mapdh.p . 2  |-  .+  =  ( +g  `  U )
19 mapdh.a . 2  |-  .+b  =  ( +g  `  C )
203, 5, 14dvhlmod 34678 . . . 4  |-  ( ph  ->  U  e.  LMod )
21 mapdh6d.w . . . . 5  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
2221eldifad 3416 . . . 4  |-  ( ph  ->  w  e.  V )
23 mapdh6d.y . . . . 5  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
2423eldifad 3416 . . . 4  |-  ( ph  ->  Y  e.  V )
256, 18lmodvacl 18105 . . . 4  |-  ( ( U  e.  LMod  /\  w  e.  V  /\  Y  e.  V )  ->  (
w  .+  Y )  e.  V )
2620, 22, 24, 25syl3anc 1268 . . 3  |-  ( ph  ->  ( w  .+  Y
)  e.  V )
273, 5, 14dvhlvec 34677 . . . . . 6  |-  ( ph  ->  U  e.  LVec )
2817eldifad 3416 . . . . . 6  |-  ( ph  ->  X  e.  V )
29 mapdh6d.wn . . . . . 6  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
306, 9, 27, 22, 28, 24, 29lspindpi 18355 . . . . 5  |-  ( ph  ->  ( ( N `  { w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { Y } ) ) )
3130simprd 465 . . . 4  |-  ( ph  ->  ( N `  {
w } )  =/=  ( N `  { Y } ) )
326, 18, 8, 9, 20, 22, 24, 31lmodindp1 18237 . . 3  |-  ( ph  ->  ( w  .+  Y
)  =/=  .0.  )
33 eldifsn 4097 . . 3  |-  ( ( w  .+  Y )  e.  ( V  \  {  .0.  } )  <->  ( (
w  .+  Y )  e.  V  /\  (
w  .+  Y )  =/=  .0.  ) )
3426, 32, 33sylanbrc 670 . 2  |-  ( ph  ->  ( w  .+  Y
)  e.  ( V 
\  {  .0.  }
) )
35 mapdh6d.z . 2  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
3635eldifad 3416 . . . . 5  |-  ( ph  ->  Z  e.  V )
37 mapdh6d.yz . . . . . 6  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
38 mapdh6d.xn . . . . . . . 8  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
396, 9, 27, 28, 24, 36, 38lspindpi 18355 . . . . . . 7  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  ( N `  { X } )  =/=  ( N `  { Z } ) ) )
4039simpld 461 . . . . . 6  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
416, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29mapdindp3 35290 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { (
w  .+  Y ) } ) )
426, 18, 8, 9, 27, 17, 23, 35, 21, 37, 40, 29mapdindp4 35291 . . . . 5  |-  ( ph  ->  -.  Z  e.  ( N `  { X ,  ( w  .+  Y ) } ) )
436, 8, 9, 27, 17, 26, 36, 41, 42lspindp1 18356 . . . 4  |-  ( ph  ->  ( ( N `  { Z } )  =/=  ( N `  {
( w  .+  Y
) } )  /\  -.  X  e.  ( N `  { Z ,  ( w  .+  Y ) } ) ) )
4443simprd 465 . . 3  |-  ( ph  ->  -.  X  e.  ( N `  { Z ,  ( w  .+  Y ) } ) )
45 prcom 4050 . . . . 5  |-  { ( w  .+  Y ) ,  Z }  =  { Z ,  ( w 
.+  Y ) }
4645fveq2i 5868 . . . 4  |-  ( N `
 { ( w 
.+  Y ) ,  Z } )  =  ( N `  { Z ,  ( w  .+  Y ) } )
4746eleq2i 2521 . . 3  |-  ( X  e.  ( N `  { ( w  .+  Y ) ,  Z } )  <->  X  e.  ( N `  { Z ,  ( w  .+  Y ) } ) )
4844, 47sylnibr 307 . 2  |-  ( ph  ->  -.  X  e.  ( N `  { ( w  .+  Y ) ,  Z } ) )
496, 9, 27, 36, 28, 26, 42lspindpi 18355 . . . 4  |-  ( ph  ->  ( ( N `  { Z } )  =/=  ( N `  { X } )  /\  ( N `  { Z } )  =/=  ( N `  { (
w  .+  Y ) } ) ) )
5049simprd 465 . . 3  |-  ( ph  ->  ( N `  { Z } )  =/=  ( N `  { (
w  .+  Y ) } ) )
5150necomd 2679 . 2  |-  ( ph  ->  ( N `  {
( w  .+  Y
) } )  =/=  ( N `  { Z } ) )
52 eqidd 2452 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  Y )
>. )  =  (
I `  <. X ,  F ,  ( w  .+  Y ) >. )
)
53 eqidd 2452 . 2  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  ( I `
 <. X ,  F ,  Z >. ) )
541, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 34, 35, 48, 51, 52, 53mapdh6aN 35303 1  |-  ( ph  ->  ( I `  <. X ,  F ,  ( ( w  .+  Y
)  .+  Z ) >. )  =  ( ( I `  <. X ,  F ,  ( w  .+  Y ) >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   _Vcvv 3045    \ cdif 3401   ifcif 3881   {csn 3968   {cpr 3970   <.cotp 3976    |-> cmpt 4461   ` cfv 5582   iota_crio 6251  (class class class)co 6290   1stc1st 6791   2ndc2nd 6792   Basecbs 15121   +g cplusg 15190   0gc0g 15338   -gcsg 16671   LModclmod 18091   LSpanclspn 18194   HLchlt 32916   LHypclh 33549   DVecHcdvh 34646  LCDualclcd 35154  mapdcmpd 35192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-riotaBAD 32525
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-ot 3977  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-tpos 6973  df-undef 7020  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-oadd 7186  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-sca 15206  df-vsca 15207  df-0g 15340  df-mre 15492  df-mrc 15493  df-acs 15495  df-preset 16173  df-poset 16191  df-plt 16204  df-lub 16220  df-glb 16221  df-join 16222  df-meet 16223  df-p0 16285  df-p1 16286  df-lat 16292  df-clat 16354  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-grp 16673  df-minusg 16674  df-sbg 16675  df-subg 16814  df-cntz 16971  df-oppg 16997  df-lsm 17288  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-ring 17782  df-oppr 17851  df-dvdsr 17869  df-unit 17870  df-invr 17900  df-dvr 17911  df-drng 17977  df-lmod 18093  df-lss 18156  df-lsp 18195  df-lvec 18326  df-lsatoms 32542  df-lshyp 32543  df-lcv 32585  df-lfl 32624  df-lkr 32652  df-ldual 32690  df-oposet 32742  df-ol 32744  df-oml 32745  df-covers 32832  df-ats 32833  df-atl 32864  df-cvlat 32888  df-hlat 32917  df-llines 33063  df-lplanes 33064  df-lvols 33065  df-lines 33066  df-psubsp 33068  df-pmap 33069  df-padd 33361  df-lhyp 33553  df-laut 33554  df-ldil 33669  df-ltrn 33670  df-trl 33725  df-tgrp 34310  df-tendo 34322  df-edring 34324  df-dveca 34570  df-disoa 34597  df-dvech 34647  df-dib 34707  df-dic 34741  df-dih 34797  df-doch 34916  df-djh 34963  df-lcdual 35155  df-mapd 35193
This theorem is referenced by:  mapdh6gN  35310
  Copyright terms: Public domain W3C validator