Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6dN Structured version   Unicode version

Theorem mapdh6dN 36411
Description: Lemmma for mapdh6N 36419. (Contributed by NM, 1-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh.p  |-  .+  =  ( +g  `  U )
mapdh.a  |-  .+b  =  ( +g  `  C )
mapdh6d.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh6d.yz  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
mapdh6d.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdh6d.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdh6d.w  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
mapdh6d.wn  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
Assertion
Ref Expression
mapdh6dN  |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  ( Y 
.+  Z ) )
>. )  =  (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )
) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    w, h    h, Z, x    .+b , h    h, I, x    .+ , h, x   
x, w
Allowed substitution hints:    ph( x, w)    C( x, w)    D( w)    .+ ( w)    .+b ( x, w)    Q( w, h)    R( w)    U( x, w)    F( w)    H( x, w, h)    I( w)    J( w)    K( x, w, h)    M( w)    .- ( w)    N( w)    V( x, w, h)    W( x, w, h)    X( w)    Y( w)    .0. ( w)    Z( w)

Proof of Theorem mapdh6dN
StepHypRef Expression
1 mapdh.h . . . . . 6  |-  H  =  ( LHyp `  K
)
2 mapdh.c . . . . . 6  |-  C  =  ( (LCDual `  K
) `  W )
3 mapdh.k . . . . . 6  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
41, 2, 3lcdlmod 36264 . . . . 5  |-  ( ph  ->  C  e.  LMod )
5 mapdh.q . . . . . 6  |-  Q  =  ( 0g `  C
)
6 mapdh.i . . . . . 6  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
7 mapdh.m . . . . . 6  |-  M  =  ( (mapd `  K
) `  W )
8 mapdh.u . . . . . 6  |-  U  =  ( ( DVecH `  K
) `  W )
9 mapdh.v . . . . . 6  |-  V  =  ( Base `  U
)
10 mapdh.s . . . . . 6  |-  .-  =  ( -g `  U )
11 mapdhc.o . . . . . 6  |-  .0.  =  ( 0g `  U )
12 mapdh.n . . . . . 6  |-  N  =  ( LSpan `  U )
13 mapdh.d . . . . . 6  |-  D  =  ( Base `  C
)
14 mapdh.r . . . . . 6  |-  R  =  ( -g `  C
)
15 mapdh.j . . . . . 6  |-  J  =  ( LSpan `  C )
16 mapdhc.f . . . . . 6  |-  ( ph  ->  F  e.  D )
17 mapdh.mn . . . . . 6  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
18 mapdhcl.x . . . . . 6  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
19 mapdh6d.w . . . . . . 7  |-  ( ph  ->  w  e.  ( V 
\  {  .0.  }
) )
2019eldifad 3481 . . . . . 6  |-  ( ph  ->  w  e.  V )
211, 8, 3dvhlvec 35781 . . . . . . . . 9  |-  ( ph  ->  U  e.  LVec )
2218eldifad 3481 . . . . . . . . 9  |-  ( ph  ->  X  e.  V )
23 mapdh6d.y . . . . . . . . . 10  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
2423eldifad 3481 . . . . . . . . 9  |-  ( ph  ->  Y  e.  V )
25 mapdh6d.wn . . . . . . . . 9  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  Y } ) )
269, 12, 21, 20, 22, 24, 25lspindpi 17554 . . . . . . . 8  |-  ( ph  ->  ( ( N `  { w } )  =/=  ( N `  { X } )  /\  ( N `  { w } )  =/=  ( N `  { Y } ) ) )
2726simpld 459 . . . . . . 7  |-  ( ph  ->  ( N `  {
w } )  =/=  ( N `  { X } ) )
2827necomd 2731 . . . . . 6  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { w } ) )
295, 6, 1, 7, 8, 9, 10, 11, 12, 2, 13, 14, 15, 3, 16, 17, 18, 20, 28mapdhcl 36399 . . . . 5  |-  ( ph  ->  ( I `  <. X ,  F ,  w >. )  e.  D )
30 mapdh.a . . . . . 6  |-  .+b  =  ( +g  `  C )
3113, 30, 5lmod0vrid 17319 . . . . 5  |-  ( ( C  e.  LMod  /\  (
I `  <. X ,  F ,  w >. )  e.  D )  -> 
( ( I `  <. X ,  F ,  w >. )  .+b  Q
)  =  ( I `
 <. X ,  F ,  w >. ) )
324, 29, 31syl2anc 661 . . . 4  |-  ( ph  ->  ( ( I `  <. X ,  F ,  w >. )  .+b  Q
)  =  ( I `
 <. X ,  F ,  w >. ) )
3332adantr 465 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =  .0.  )  ->  ( (
I `  <. X ,  F ,  w >. ) 
.+b  Q )  =  ( I `  <. X ,  F ,  w >. ) )
34 oteq3 4217 . . . . . 6  |-  ( ( Y  .+  Z )  =  .0.  ->  <. X ,  F ,  ( Y  .+  Z ) >.  =  <. X ,  F ,  .0.  >.
)
3534fveq2d 5861 . . . . 5  |-  ( ( Y  .+  Z )  =  .0.  ->  (
I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  ( I `  <. X ,  F ,  .0.  >. ) )
365, 6, 11, 18, 16mapdhval0 36397 . . . . 5  |-  ( ph  ->  ( I `  <. X ,  F ,  .0.  >.
)  =  Q )
3735, 36sylan9eqr 2523 . . . 4  |-  ( (
ph  /\  ( Y  .+  Z )  =  .0.  )  ->  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )  =  Q )
3837oveq2d 6291 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =  .0.  )  ->  ( (
I `  <. X ,  F ,  w >. ) 
.+b  ( I `  <. X ,  F , 
( Y  .+  Z
) >. ) )  =  ( ( I `  <. X ,  F ,  w >. )  .+b  Q
) )
39 oveq2 6283 . . . . . 6  |-  ( ( Y  .+  Z )  =  .0.  ->  (
w  .+  ( Y  .+  Z ) )  =  ( w  .+  .0.  ) )
401, 8, 3dvhlmod 35782 . . . . . . 7  |-  ( ph  ->  U  e.  LMod )
41 mapdh.p . . . . . . . 8  |-  .+  =  ( +g  `  U )
429, 41, 11lmod0vrid 17319 . . . . . . 7  |-  ( ( U  e.  LMod  /\  w  e.  V )  ->  (
w  .+  .0.  )  =  w )
4340, 20, 42syl2anc 661 . . . . . 6  |-  ( ph  ->  ( w  .+  .0.  )  =  w )
4439, 43sylan9eqr 2523 . . . . 5  |-  ( (
ph  /\  ( Y  .+  Z )  =  .0.  )  ->  ( w  .+  ( Y  .+  Z
) )  =  w )
4544oteq3d 4220 . . . 4  |-  ( (
ph  /\  ( Y  .+  Z )  =  .0.  )  ->  <. X ,  F ,  ( w  .+  ( Y  .+  Z
) ) >.  =  <. X ,  F ,  w >. )
4645fveq2d 5861 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =  .0.  )  ->  ( I `  <. X ,  F ,  ( w  .+  ( Y  .+  Z ) ) >. )  =  ( I `  <. X ,  F ,  w >. ) )
4733, 38, 463eqtr4rd 2512 . 2  |-  ( (
ph  /\  ( Y  .+  Z )  =  .0.  )  ->  ( I `  <. X ,  F ,  ( w  .+  ( Y  .+  Z ) ) >. )  =  ( ( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )
) )
483adantr 465 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  ( K  e.  HL  /\  W  e.  H ) )
4916adantr 465 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  F  e.  D
)
5017adantr 465 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
5118adantr 465 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  X  e.  ( V  \  {  .0.  } ) )
5219adantr 465 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  w  e.  ( V  \  {  .0.  } ) )
53 mapdh6d.z . . . . . . 7  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
5453eldifad 3481 . . . . . 6  |-  ( ph  ->  Z  e.  V )
559, 41lmodvacl 17302 . . . . . 6  |-  ( ( U  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .+  Z )  e.  V )
5640, 24, 54, 55syl3anc 1223 . . . . 5  |-  ( ph  ->  ( Y  .+  Z
)  e.  V )
5756anim1i 568 . . . 4  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  ( ( Y 
.+  Z )  e.  V  /\  ( Y 
.+  Z )  =/= 
.0.  ) )
58 eldifsn 4145 . . . 4  |-  ( ( Y  .+  Z )  e.  ( V  \  {  .0.  } )  <->  ( ( Y  .+  Z )  e.  V  /\  ( Y 
.+  Z )  =/= 
.0.  ) )
5957, 58sylibr 212 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  ( Y  .+  Z )  e.  ( V  \  {  .0.  } ) )
60 mapdh6d.yz . . . . . . 7  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { Z } ) )
61 mapdh6d.xn . . . . . . . . 9  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
629, 12, 21, 22, 24, 54, 61lspindpi 17554 . . . . . . . 8  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  ( N `  { X } )  =/=  ( N `  { Z } ) ) )
6362simpld 459 . . . . . . 7  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
649, 41, 11, 12, 21, 18, 23, 53, 19, 60, 63, 25mapdindp1 36392 . . . . . 6  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { ( Y  .+  Z ) } ) )
659, 41, 11, 12, 21, 18, 23, 53, 19, 60, 63, 25mapdindp2 36393 . . . . . 6  |-  ( ph  ->  -.  w  e.  ( N `  { X ,  ( Y  .+  Z ) } ) )
669, 11, 12, 21, 18, 56, 20, 64, 65lspindp1 17555 . . . . 5  |-  ( ph  ->  ( ( N `  { w } )  =/=  ( N `  { ( Y  .+  Z ) } )  /\  -.  X  e.  ( N `  {
w ,  ( Y 
.+  Z ) } ) ) )
6766simprd 463 . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { w ,  ( Y  .+  Z ) } ) )
6867adantr 465 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  -.  X  e.  ( N `  { w ,  ( Y  .+  Z ) } ) )
6926simprd 463 . . . . . . . . 9  |-  ( ph  ->  ( N `  {
w } )  =/=  ( N `  { Y } ) )
709, 11, 12, 21, 19, 24, 69lspsnne1 17539 . . . . . . . 8  |-  ( ph  ->  -.  w  e.  ( N `  { Y } ) )
71 eqid 2460 . . . . . . . . . 10  |-  ( LSSum `  U )  =  (
LSSum `  U )
729, 12, 71, 40, 24, 54lsmpr 17511 . . . . . . . . 9  |-  ( ph  ->  ( N `  { Y ,  Z }
)  =  ( ( N `  { Y } ) ( LSSum `  U ) ( N `
 { Z }
) ) )
7360oveq2d 6291 . . . . . . . . 9  |-  ( ph  ->  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Y } ) )  =  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Z } ) ) )
74 eqid 2460 . . . . . . . . . . . . 13  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
759, 74, 12lspsncl 17399 . . . . . . . . . . . 12  |-  ( ( U  e.  LMod  /\  Y  e.  V )  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
7640, 24, 75syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( N `  { Y } )  e.  (
LSubSp `  U ) )
7774lsssubg 17379 . . . . . . . . . . 11  |-  ( ( U  e.  LMod  /\  ( N `  { Y } )  e.  (
LSubSp `  U ) )  ->  ( N `  { Y } )  e.  (SubGrp `  U )
)
7840, 76, 77syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( N `  { Y } )  e.  (SubGrp `  U ) )
7971lsmidm 16471 . . . . . . . . . 10  |-  ( ( N `  { Y } )  e.  (SubGrp `  U )  ->  (
( N `  { Y } ) ( LSSum `  U ) ( N `
 { Y }
) )  =  ( N `  { Y } ) )
8078, 79syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( N `  { Y } ) (
LSSum `  U ) ( N `  { Y } ) )  =  ( N `  { Y } ) )
8172, 73, 803eqtr2d 2507 . . . . . . . 8  |-  ( ph  ->  ( N `  { Y ,  Z }
)  =  ( N `
 { Y }
) )
8270, 81neleqtrrd 2573 . . . . . . 7  |-  ( ph  ->  -.  w  e.  ( N `  { Y ,  Z } ) )
839, 41, 12, 40, 24, 54, 20, 82lspindp4 17559 . . . . . 6  |-  ( ph  ->  -.  w  e.  ( N `  { Y ,  ( Y  .+  Z ) } ) )
849, 12, 21, 20, 24, 56, 83lspindpi 17554 . . . . 5  |-  ( ph  ->  ( ( N `  { w } )  =/=  ( N `  { Y } )  /\  ( N `  { w } )  =/=  ( N `  { ( Y  .+  Z ) } ) ) )
8584simprd 463 . . . 4  |-  ( ph  ->  ( N `  {
w } )  =/=  ( N `  {
( Y  .+  Z
) } ) )
8685adantr 465 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  ( N `  { w } )  =/=  ( N `  { ( Y  .+  Z ) } ) )
87 eqidd 2461 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  ( I `  <. X ,  F ,  w >. )  =  ( I `  <. X ,  F ,  w >. ) )
88 eqidd 2461 . . 3  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  ( I `  <. X ,  F , 
( Y  .+  Z
) >. )  =  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )
)
895, 6, 1, 7, 8, 9, 10, 11, 12, 2, 13, 14, 15, 48, 49, 50, 51, 41, 30, 52, 59, 68, 86, 87, 88mapdh6aN 36407 . 2  |-  ( (
ph  /\  ( Y  .+  Z )  =/=  .0.  )  ->  ( I `  <. X ,  F , 
( w  .+  ( Y  .+  Z ) )
>. )  =  (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )
) )
9047, 89pm2.61dane 2778 1  |-  ( ph  ->  ( I `  <. X ,  F ,  ( w  .+  ( Y 
.+  Z ) )
>. )  =  (
( I `  <. X ,  F ,  w >. )  .+b  ( I `  <. X ,  F ,  ( Y  .+  Z ) >. )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   _Vcvv 3106    \ cdif 3466   ifcif 3932   {csn 4020   {cpr 4022   <.cotp 4028    |-> cmpt 4498   ` cfv 5579   iota_crio 6235  (class class class)co 6275   1stc1st 6772   2ndc2nd 6773   Basecbs 14479   +g cplusg 14544   0gc0g 14684   -gcsg 15719  SubGrpcsubg 15983   LSSumclsm 16443   LModclmod 17288   LSubSpclss 17354   LSpanclspn 17393   HLchlt 34022   LHypclh 34655   DVecHcdvh 35750  LCDualclcd 36258  mapdcmpd 36296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-riotaBAD 33631
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-fal 1380  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-ot 4029  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-of 6515  df-om 6672  df-1st 6774  df-2nd 6775  df-tpos 6945  df-undef 6992  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-nn 10526  df-2 10583  df-3 10584  df-4 10585  df-5 10586  df-6 10587  df-n0 10785  df-z 10854  df-uz 11072  df-fz 11662  df-struct 14481  df-ndx 14482  df-slot 14483  df-base 14484  df-sets 14485  df-ress 14486  df-plusg 14557  df-mulr 14558  df-sca 14560  df-vsca 14561  df-0g 14686  df-mre 14830  df-mrc 14831  df-acs 14833  df-poset 15422  df-plt 15434  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-p0 15515  df-p1 15516  df-lat 15522  df-clat 15584  df-mnd 15721  df-submnd 15771  df-grp 15851  df-minusg 15852  df-sbg 15853  df-subg 15986  df-cntz 16143  df-oppg 16169  df-lsm 16445  df-cmn 16589  df-abl 16590  df-mgp 16925  df-ur 16937  df-rng 16981  df-oppr 17049  df-dvdsr 17067  df-unit 17068  df-invr 17098  df-dvr 17109  df-drng 17174  df-lmod 17290  df-lss 17355  df-lsp 17394  df-lvec 17525  df-lsatoms 33648  df-lshyp 33649  df-lcv 33691  df-lfl 33730  df-lkr 33758  df-ldual 33796  df-oposet 33848  df-ol 33850  df-oml 33851  df-covers 33938  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023  df-llines 34169  df-lplanes 34170  df-lvols 34171  df-lines 34172  df-psubsp 34174  df-pmap 34175  df-padd 34467  df-lhyp 34659  df-laut 34660  df-ldil 34775  df-ltrn 34776  df-trl 34830  df-tgrp 35414  df-tendo 35426  df-edring 35428  df-dveca 35674  df-disoa 35701  df-dvech 35751  df-dib 35811  df-dic 35845  df-dih 35901  df-doch 36020  df-djh 36067  df-lcdual 36259  df-mapd 36297
This theorem is referenced by:  mapdh6gN  36414
  Copyright terms: Public domain W3C validator