Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6aN Structured version   Unicode version

Theorem mapdh6aN 35015
Description: Lemma for mapdh6N 35027. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q  |-  Q  =  ( 0g `  C
)
mapdh.i  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
mapdh.h  |-  H  =  ( LHyp `  K
)
mapdh.m  |-  M  =  ( (mapd `  K
) `  W )
mapdh.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapdh.v  |-  V  =  ( Base `  U
)
mapdh.s  |-  .-  =  ( -g `  U )
mapdhc.o  |-  .0.  =  ( 0g `  U )
mapdh.n  |-  N  =  ( LSpan `  U )
mapdh.c  |-  C  =  ( (LCDual `  K
) `  W )
mapdh.d  |-  D  =  ( Base `  C
)
mapdh.r  |-  R  =  ( -g `  C
)
mapdh.j  |-  J  =  ( LSpan `  C )
mapdh.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
mapdhc.f  |-  ( ph  ->  F  e.  D )
mapdh.mn  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
mapdhcl.x  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
mapdh.p  |-  .+  =  ( +g  `  U )
mapdh.a  |-  .+b  =  ( +g  `  C )
mapdhe6.y  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
mapdhe6.z  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
mapdhe6.xn  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
mapdh6.yz  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
mapdh6.fg  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
mapdh6.fe  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
Assertion
Ref Expression
mapdh6aN  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Distinct variable groups:    x, D, h    h, F, x    x, J    x, M    x, N    x,  .0.    x, Q    x, R    x, 
.-    h, X, x    h, Y, x    ph, h    .0. , h    C, h    D, h   
h, J    h, M    h, N    R, h    U, h    .- , h    h, G, x   
h, E    h, Z, x   
.+b , h    h, I    .+ , h, x
Allowed substitution hints:    ph( x)    C( x)   
.+b ( x)    Q( h)    U( x)    E( x)    H( x, h)    I( x)    K( x, h)    V( x, h)    W( x, h)

Proof of Theorem mapdh6aN
StepHypRef Expression
1 mapdh.q . . . 4  |-  Q  =  ( 0g `  C
)
2 mapdh.i . . . 4  |-  I  =  ( x  e.  _V  |->  if ( ( 2nd `  x
)  =  .0.  ,  Q ,  ( iota_ h  e.  D  ( ( M `  ( N `
 { ( 2nd `  x ) } ) )  =  ( J `
 { h }
)  /\  ( M `  ( N `  {
( ( 1st `  ( 1st `  x ) ) 
.-  ( 2nd `  x
) ) } ) )  =  ( J `
 { ( ( 2nd `  ( 1st `  x ) ) R h ) } ) ) ) ) )
3 mapdh.h . . . 4  |-  H  =  ( LHyp `  K
)
4 mapdh.m . . . 4  |-  M  =  ( (mapd `  K
) `  W )
5 mapdh.u . . . 4  |-  U  =  ( ( DVecH `  K
) `  W )
6 mapdh.v . . . 4  |-  V  =  ( Base `  U
)
7 mapdh.s . . . 4  |-  .-  =  ( -g `  U )
8 mapdhc.o . . . 4  |-  .0.  =  ( 0g `  U )
9 mapdh.n . . . 4  |-  N  =  ( LSpan `  U )
10 mapdh.c . . . 4  |-  C  =  ( (LCDual `  K
) `  W )
11 mapdh.d . . . 4  |-  D  =  ( Base `  C
)
12 mapdh.r . . . 4  |-  R  =  ( -g `  C
)
13 mapdh.j . . . 4  |-  J  =  ( LSpan `  C )
14 mapdh.k . . . 4  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
15 mapdhc.f . . . 4  |-  ( ph  ->  F  e.  D )
16 mapdh.mn . . . 4  |-  ( ph  ->  ( M `  ( N `  { X } ) )  =  ( J `  { F } ) )
17 mapdhcl.x . . . 4  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
18 mapdh.p . . . 4  |-  .+  =  ( +g  `  U )
19 mapdh.a . . . 4  |-  .+b  =  ( +g  `  C )
20 mapdhe6.y . . . 4  |-  ( ph  ->  Y  e.  ( V 
\  {  .0.  }
) )
21 mapdhe6.z . . . 4  |-  ( ph  ->  Z  e.  ( V 
\  {  .0.  }
) )
22 mapdhe6.xn . . . 4  |-  ( ph  ->  -.  X  e.  ( N `  { Y ,  Z } ) )
23 mapdh6.yz . . . 4  |-  ( ph  ->  ( N `  { Y } )  =/=  ( N `  { Z } ) )
24 mapdh6.fg . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  =  G )
25 mapdh6.fe . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  =  E )
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6lem2N 35014 . . 3  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `  { ( G  .+b  E ) } ) )
2724, 25oveq12d 6323 . . . . 5  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  =  ( G 
.+b  E ) )
2827sneqd 4014 . . . 4  |-  ( ph  ->  { ( ( I `
 <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) }  =  {
( G  .+b  E
) } )
2928fveq2d 5885 . . 3  |-  ( ph  ->  ( J `  {
( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) } )  =  ( J `  {
( G  .+b  E
) } ) )
3026, 29eqtr4d 2473 . 2  |-  ( ph  ->  ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `  { ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) } ) )
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6lem1N 35013 . . 3  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( G 
.+b  E ) ) } ) )
3227oveq2d 6321 . . . . 5  |-  ( ph  ->  ( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )  =  ( F R ( G  .+b  E
) ) )
3332sneqd 4014 . . . 4  |-  ( ph  ->  { ( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) }  =  { ( F R ( G  .+b  E
) ) } )
3433fveq2d 5885 . . 3  |-  ( ph  ->  ( J `  {
( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) ) } )  =  ( J `  { ( F R ( G 
.+b  E ) ) } ) )
3531, 34eqtr4d 2473 . 2  |-  ( ph  ->  ( M `  ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( ( I `  <. X ,  F ,  Y >. ) 
.+b  ( I `  <. X ,  F ,  Z >. ) ) ) } ) )
363, 5, 14dvhlmod 34390 . . . . 5  |-  ( ph  ->  U  e.  LMod )
3720eldifad 3454 . . . . 5  |-  ( ph  ->  Y  e.  V )
3821eldifad 3454 . . . . 5  |-  ( ph  ->  Z  e.  V )
396, 18lmodvacl 18040 . . . . 5  |-  ( ( U  e.  LMod  /\  Y  e.  V  /\  Z  e.  V )  ->  ( Y  .+  Z )  e.  V )
4036, 37, 38, 39syl3anc 1264 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  e.  V )
416, 18, 8, 9, 36, 37, 38, 23lmodindp1 18172 . . . 4  |-  ( ph  ->  ( Y  .+  Z
)  =/=  .0.  )
42 eldifsn 4128 . . . 4  |-  ( ( Y  .+  Z )  e.  ( V  \  {  .0.  } )  <->  ( ( Y  .+  Z )  e.  V  /\  ( Y 
.+  Z )  =/= 
.0.  ) )
4340, 41, 42sylanbrc 668 . . 3  |-  ( ph  ->  ( Y  .+  Z
)  e.  ( V 
\  {  .0.  }
) )
443, 10, 14lcdlmod 34872 . . . 4  |-  ( ph  ->  C  e.  LMod )
453, 5, 14dvhlvec 34389 . . . . . . 7  |-  ( ph  ->  U  e.  LVec )
4617eldifad 3454 . . . . . . 7  |-  ( ph  ->  X  e.  V )
476, 8, 9, 45, 37, 21, 46, 23, 22lspindp2 18293 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Y } )  /\  -.  Z  e.  ( N `  { X ,  Y } ) ) )
4847simpld 460 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Y } ) )
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 37, 48mapdhcl 35007 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Y >. )  e.  D )
506, 8, 9, 45, 20, 38, 46, 23, 22lspindp1 18291 . . . . . 6  |-  ( ph  ->  ( ( N `  { X } )  =/=  ( N `  { Z } )  /\  -.  Y  e.  ( N `  { X ,  Z } ) ) )
5150simpld 460 . . . . 5  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { Z } ) )
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 38, 51mapdhcl 35007 . . . 4  |-  ( ph  ->  ( I `  <. X ,  F ,  Z >. )  e.  D )
5311, 19lmodvacl 18040 . . . 4  |-  ( ( C  e.  LMod  /\  (
I `  <. X ,  F ,  Y >. )  e.  D  /\  (
I `  <. X ,  F ,  Z >. )  e.  D )  -> 
( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
5444, 49, 52, 53syl3anc 1264 . . 3  |-  ( ph  ->  ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) )  e.  D )
55 eqid 2429 . . . . . 6  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
566, 55, 9, 36, 37, 38lspprcl 18136 . . . . . 6  |-  ( ph  ->  ( N `  { Y ,  Z }
)  e.  ( LSubSp `  U ) )
576, 18, 9, 36, 37, 38lspprvacl 18157 . . . . . 6  |-  ( ph  ->  ( Y  .+  Z
)  e.  ( N `
 { Y ,  Z } ) )
5855, 9, 36, 56, 57lspsnel5a 18154 . . . . 5  |-  ( ph  ->  ( N `  {
( Y  .+  Z
) } )  C_  ( N `  { Y ,  Z } ) )
596, 55, 9, 36, 56, 46lspsnel5 18153 . . . . . 6  |-  ( ph  ->  ( X  e.  ( N `  { Y ,  Z } )  <->  ( N `  { X } ) 
C_  ( N `  { Y ,  Z }
) ) )
6022, 59mtbid 301 . . . . 5  |-  ( ph  ->  -.  ( N `  { X } )  C_  ( N `  { Y ,  Z } ) )
61 nssne2 3527 . . . . 5  |-  ( ( ( N `  {
( Y  .+  Z
) } )  C_  ( N `  { Y ,  Z } )  /\  -.  ( N `  { X } )  C_  ( N `  { Y ,  Z } ) )  ->  ( N `  { ( Y  .+  Z ) } )  =/=  ( N `  { X } ) )
6258, 60, 61syl2anc 665 . . . 4  |-  ( ph  ->  ( N `  {
( Y  .+  Z
) } )  =/=  ( N `  { X } ) )
6362necomd 2702 . . 3  |-  ( ph  ->  ( N `  { X } )  =/=  ( N `  { ( Y  .+  Z ) } ) )
641, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 43, 54, 63mapdheq 35008 . 2  |-  ( ph  ->  ( ( I `  <. X ,  F , 
( Y  .+  Z
) >. )  =  ( ( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) )  <->  ( ( M `  ( N `  { ( Y  .+  Z ) } ) )  =  ( J `
 { ( ( I `  <. X ,  F ,  Y >. ) 
.+b  ( I `  <. X ,  F ,  Z >. ) ) } )  /\  ( M `
 ( N `  { ( X  .-  ( Y  .+  Z ) ) } ) )  =  ( J `  { ( F R ( ( I `  <. X ,  F ,  Y >. )  .+b  (
I `  <. X ,  F ,  Z >. ) ) ) } ) ) ) )
6530, 35, 64mpbir2and 930 1  |-  ( ph  ->  ( I `  <. X ,  F ,  ( Y  .+  Z )
>. )  =  (
( I `  <. X ,  F ,  Y >. )  .+b  ( I `  <. X ,  F ,  Z >. ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625   _Vcvv 3087    \ cdif 3439    C_ wss 3442   ifcif 3915   {csn 4002   {cpr 4004   <.cotp 4010    |-> cmpt 4484   ` cfv 5601   iota_crio 6266  (class class class)co 6305   1stc1st 6805   2ndc2nd 6806   Basecbs 15084   +g cplusg 15152   0gc0g 15297   -gcsg 16622   LModclmod 18026   LSubSpclss 18090   LSpanclspn 18129   HLchlt 32628   LHypclh 33261   DVecHcdvh 34358  LCDualclcd 34866  mapdcmpd 34904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615  ax-riotaBAD 32237
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-fal 1443  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-ot 4011  df-uni 4223  df-int 4259  df-iun 4304  df-iin 4305  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-of 6545  df-om 6707  df-1st 6807  df-2nd 6808  df-tpos 6981  df-undef 7028  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-map 7482  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11783  df-struct 15086  df-ndx 15087  df-slot 15088  df-base 15089  df-sets 15090  df-ress 15091  df-plusg 15165  df-mulr 15166  df-sca 15168  df-vsca 15169  df-0g 15299  df-mre 15443  df-mrc 15444  df-acs 15446  df-preset 16124  df-poset 16142  df-plt 16155  df-lub 16171  df-glb 16172  df-join 16173  df-meet 16174  df-p0 16236  df-p1 16237  df-lat 16243  df-clat 16305  df-mgm 16439  df-sgrp 16478  df-mnd 16488  df-submnd 16534  df-grp 16624  df-minusg 16625  df-sbg 16626  df-subg 16765  df-cntz 16922  df-oppg 16948  df-lsm 17223  df-cmn 17367  df-abl 17368  df-mgp 17659  df-ur 17671  df-ring 17717  df-oppr 17786  df-dvdsr 17804  df-unit 17805  df-invr 17835  df-dvr 17846  df-drng 17912  df-lmod 18028  df-lss 18091  df-lsp 18130  df-lvec 18261  df-lsatoms 32254  df-lshyp 32255  df-lcv 32297  df-lfl 32336  df-lkr 32364  df-ldual 32402  df-oposet 32454  df-ol 32456  df-oml 32457  df-covers 32544  df-ats 32545  df-atl 32576  df-cvlat 32600  df-hlat 32629  df-llines 32775  df-lplanes 32776  df-lvols 32777  df-lines 32778  df-psubsp 32780  df-pmap 32781  df-padd 33073  df-lhyp 33265  df-laut 33266  df-ldil 33381  df-ltrn 33382  df-trl 33437  df-tgrp 34022  df-tendo 34034  df-edring 34036  df-dveca 34282  df-disoa 34309  df-dvech 34359  df-dib 34419  df-dic 34453  df-dih 34509  df-doch 34628  df-djh 34675  df-lcdual 34867  df-mapd 34905
This theorem is referenced by:  mapdh6dN  35019  mapdh6eN  35020  mapdh6fN  35021  mapdh6jN  35025
  Copyright terms: Public domain W3C validator