Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdffval Structured version   Visualization version   Unicode version

Theorem mapdffval 35194
Description: Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015.)
Hypothesis
Ref Expression
mapdval.h  |-  H  =  ( LHyp `  K
)
Assertion
Ref Expression
mapdffval  |-  ( K  e.  X  ->  (mapd `  K )  =  ( w  e.  H  |->  ( s  e.  ( LSubSp `  ( ( DVecH `  K
) `  w )
)  |->  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `
 w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) ) )
Distinct variable groups:    w, H    f, s, w, K
Allowed substitution hints:    H( f, s)    X( w, f, s)

Proof of Theorem mapdffval
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elex 3054 . 2  |-  ( K  e.  X  ->  K  e.  _V )
2 fveq2 5865 . . . . 5  |-  ( k  =  K  ->  ( LHyp `  k )  =  ( LHyp `  K
) )
3 mapdval.h . . . . 5  |-  H  =  ( LHyp `  K
)
42, 3syl6eqr 2503 . . . 4  |-  ( k  =  K  ->  ( LHyp `  k )  =  H )
5 fveq2 5865 . . . . . . 7  |-  ( k  =  K  ->  ( DVecH `  k )  =  ( DVecH `  K )
)
65fveq1d 5867 . . . . . 6  |-  ( k  =  K  ->  (
( DVecH `  k ) `  w )  =  ( ( DVecH `  K ) `  w ) )
76fveq2d 5869 . . . . 5  |-  ( k  =  K  ->  ( LSubSp `
 ( ( DVecH `  k ) `  w
) )  =  (
LSubSp `  ( ( DVecH `  K ) `  w
) ) )
86fveq2d 5869 . . . . . 6  |-  ( k  =  K  ->  (LFnl `  ( ( DVecH `  k
) `  w )
)  =  (LFnl `  ( ( DVecH `  K
) `  w )
) )
9 fveq2 5865 . . . . . . . . . 10  |-  ( k  =  K  ->  ( ocH `  k )  =  ( ocH `  K
) )
109fveq1d 5867 . . . . . . . . 9  |-  ( k  =  K  ->  (
( ocH `  k
) `  w )  =  ( ( ocH `  K ) `  w
) )
116fveq2d 5869 . . . . . . . . . . 11  |-  ( k  =  K  ->  (LKer `  ( ( DVecH `  k
) `  w )
)  =  (LKer `  ( ( DVecH `  K
) `  w )
) )
1211fveq1d 5867 . . . . . . . . . 10  |-  ( k  =  K  ->  (
(LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) )
1310, 12fveq12d 5871 . . . . . . . . 9  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) )  =  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )
1410, 13fveq12d 5871 . . . . . . . 8  |-  ( k  =  K  ->  (
( ( ocH `  k
) `  w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) ) )
1514, 12eqeq12d 2466 . . . . . . 7  |-  ( k  =  K  ->  (
( ( ( ocH `  k ) `  w
) `  ( (
( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) ) )  =  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )  <->  ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f ) ) )
1613sseq1d 3459 . . . . . . 7  |-  ( k  =  K  ->  (
( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
)  C_  s  <->  ( (
( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) )
1715, 16anbi12d 717 . . . . . 6  |-  ( k  =  K  ->  (
( ( ( ( ocH `  k ) `
 w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  /\  (
( ( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) )  C_  s )  <->  ( (
( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) ) )
188, 17rabeqbidv 3040 . . . . 5  |-  ( k  =  K  ->  { f  e.  (LFnl `  (
( DVecH `  k ) `  w ) )  |  ( ( ( ( ocH `  k ) `
 w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  /\  (
( ( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) )  C_  s ) }  =  { f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } )
197, 18mpteq12dv 4481 . . . 4  |-  ( k  =  K  ->  (
s  e.  ( LSubSp `  ( ( DVecH `  k
) `  w )
)  |->  { f  e.  (LFnl `  ( ( DVecH `  k ) `  w ) )  |  ( ( ( ( ocH `  k ) `
 w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  /\  (
( ( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) )  C_  s ) } )  =  ( s  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) )
204, 19mpteq12dv 4481 . . 3  |-  ( k  =  K  ->  (
w  e.  ( LHyp `  k )  |->  ( s  e.  ( LSubSp `  (
( DVecH `  k ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  k
) `  w )
)  |  ( ( ( ( ocH `  k
) `  w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  /\  (
( ( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) )  C_  s ) } ) )  =  ( w  e.  H  |->  ( s  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) ) )
21 df-mapd 35193 . . 3  |- mapd  =  ( k  e.  _V  |->  ( w  e.  ( LHyp `  k )  |->  ( s  e.  ( LSubSp `  (
( DVecH `  k ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  k
) `  w )
)  |  ( ( ( ( ocH `  k
) `  w ) `  ( ( ( ocH `  k ) `  w
) `  ( (LKer `  ( ( DVecH `  k
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  k ) `  w ) ) `  f )  /\  (
( ( ocH `  k
) `  w ) `  ( (LKer `  (
( DVecH `  k ) `  w ) ) `  f ) )  C_  s ) } ) ) )
22 fvex 5875 . . . . 5  |-  ( LHyp `  K )  e.  _V
233, 22eqeltri 2525 . . . 4  |-  H  e. 
_V
2423mptex 6136 . . 3  |-  ( w  e.  H  |->  ( s  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) )  |->  { f  e.  (LFnl `  ( ( DVecH `  K
) `  w )
)  |  ( ( ( ( ocH `  K
) `  w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) )  e.  _V
2520, 21, 24fvmpt 5948 . 2  |-  ( K  e.  _V  ->  (mapd `  K )  =  ( w  e.  H  |->  ( s  e.  ( LSubSp `  ( ( DVecH `  K
) `  w )
)  |->  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `
 w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) ) )
261, 25syl 17 1  |-  ( K  e.  X  ->  (mapd `  K )  =  ( w  e.  H  |->  ( s  e.  ( LSubSp `  ( ( DVecH `  K
) `  w )
)  |->  { f  e.  (LFnl `  ( ( DVecH `  K ) `  w ) )  |  ( ( ( ( ocH `  K ) `
 w ) `  ( ( ( ocH `  K ) `  w
) `  ( (LKer `  ( ( DVecH `  K
) `  w )
) `  f )
) )  =  ( (LKer `  ( ( DVecH `  K ) `  w ) ) `  f )  /\  (
( ( ocH `  K
) `  w ) `  ( (LKer `  (
( DVecH `  K ) `  w ) ) `  f ) )  C_  s ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1444    e. wcel 1887   {crab 2741   _Vcvv 3045    C_ wss 3404    |-> cmpt 4461   ` cfv 5582   LSubSpclss 18155  LFnlclfn 32623  LKerclk 32651   LHypclh 33549   DVecHcdvh 34646   ocHcoch 34915  mapdcmpd 35192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-mapd 35193
This theorem is referenced by:  mapdfval  35195
  Copyright terms: Public domain W3C validator