Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd1o Unicode version

Theorem mapd1o 32131
Description: The map defined by df-mapd 32108 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows  M satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 32068, mapdrval 32130, lclkrs 32022, lclkr 32016,...) to use  T  i^i  ~P C? TODO: maybe get rid of $d's for  g vs.  K U W,. propagate to mapdrn 32132 and any others. (Contributed by NM, 12-Mar-2015.)
Hypotheses
Ref Expression
mapd1o.h  |-  H  =  ( LHyp `  K
)
mapd1o.o  |-  O  =  ( ( ocH `  K
) `  W )
mapd1o.m  |-  M  =  ( (mapd `  K
) `  W )
mapd1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapd1o.s  |-  S  =  ( LSubSp `  U )
mapd1o.f  |-  F  =  (LFnl `  U )
mapd1o.l  |-  L  =  (LKer `  U )
mapd1o.d  |-  D  =  (LDual `  U )
mapd1o.t  |-  T  =  ( LSubSp `  D )
mapd1o.c  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
mapd1o.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
mapd1o  |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
Distinct variable groups:    g, F    g, K    g, L    g, O    U, g    g, W
Allowed substitution hints:    ph( g)    C( g)    D( g)    S( g)    T( g)    H( g)    M( g)

Proof of Theorem mapd1o
Dummy variables  f 
c  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapd1o.f . . . . . 6  |-  F  =  (LFnl `  U )
2 fvex 5701 . . . . . 6  |-  (LFnl `  U )  e.  _V
31, 2eqeltri 2474 . . . . 5  |-  F  e. 
_V
43rabex 4314 . . . 4  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) }  e.  _V
5 eqid 2404 . . . 4  |-  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )
64, 5fnmpti 5532 . . 3  |-  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )  Fn  S
7 mapd1o.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
8 mapd1o.h . . . . . 6  |-  H  =  ( LHyp `  K
)
9 mapd1o.u . . . . . 6  |-  U  =  ( ( DVecH `  K
) `  W )
10 mapd1o.s . . . . . 6  |-  S  =  ( LSubSp `  U )
11 mapd1o.l . . . . . 6  |-  L  =  (LKer `  U )
12 mapd1o.o . . . . . 6  |-  O  =  ( ( ocH `  K
) `  W )
13 mapd1o.m . . . . . 6  |-  M  =  ( (mapd `  K
) `  W )
148, 9, 10, 1, 11, 12, 13mapdfval 32110 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } ) )
157, 14syl 16 . . . 4  |-  ( ph  ->  M  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } ) )
1615fneq1d 5495 . . 3  |-  ( ph  ->  ( M  Fn  S  <->  ( t  e.  S  |->  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  t ) } )  Fn  S ) )
176, 16mpbiri 225 . 2  |-  ( ph  ->  M  Fn  S )
183rabex 4314 . . . . . . 7  |-  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) }  e.  _V
19 eqid 2404 . . . . . . 7  |-  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )
2018, 19fnmpti 5532 . . . . . 6  |-  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )  Fn  S
218, 9, 10, 1, 11, 12, 13mapdfval 32110 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } ) )
227, 21syl 16 . . . . . . 7  |-  ( ph  ->  M  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } ) )
2322fneq1d 5495 . . . . . 6  |-  ( ph  ->  ( M  Fn  S  <->  ( t  e.  S  |->  { g  e.  F  | 
( ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g )  /\  ( O `  ( L `
 g ) ) 
C_  t ) } )  Fn  S ) )
2420, 23mpbiri 225 . . . . 5  |-  ( ph  ->  M  Fn  S )
25 fvelrnb 5733 . . . . 5  |-  ( M  Fn  S  ->  (
t  e.  ran  M  <->  E. c  e.  S  ( M `  c )  =  t ) )
2624, 25syl 16 . . . 4  |-  ( ph  ->  ( t  e.  ran  M  <->  E. c  e.  S  ( M `  c )  =  t ) )
277adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simpr 448 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  c  e.  S )
298, 9, 10, 1, 11, 12, 13, 27, 28mapdval 32111 . . . . . . . 8  |-  ( (
ph  /\  c  e.  S )  ->  ( M `  c )  =  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) } )
30 mapd1o.d . . . . . . . . . 10  |-  D  =  (LDual `  U )
31 mapd1o.t . . . . . . . . . 10  |-  T  =  ( LSubSp `  D )
32 mapd1o.c . . . . . . . . . 10  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
33 eqid 2404 . . . . . . . . . 10  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  =  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }
348, 12, 9, 10, 1, 11, 30, 31, 32, 33, 27, 28lclkrs2 32023 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) } 
C_  C ) )
35 elin 3490 . . . . . . . . . 10  |-  ( { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ( T  i^i  ~P C )  <->  ( {
f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  T  /\  {
f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C ) )
363rabex 4314 . . . . . . . . . . . 12  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  _V
3736elpw 3765 . . . . . . . . . . 11  |-  ( { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C  <->  { f  e.  F  |  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  C_  C )
3837anbi2i 676 . . . . . . . . . 10  |-  ( ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C )  <-> 
( { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  C_  C ) )
3935, 38bitr2i 242 . . . . . . . . 9  |-  ( ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) } 
C_  C )  <->  { f  e.  F  |  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  ( T  i^i  ~P C
) )
4034, 39sylib 189 . . . . . . . 8  |-  ( (
ph  /\  c  e.  S )  ->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  ( T  i^i  ~P C
) )
4129, 40eqeltrd 2478 . . . . . . 7  |-  ( (
ph  /\  c  e.  S )  ->  ( M `  c )  e.  ( T  i^i  ~P C ) )
42 eleq1 2464 . . . . . . 7  |-  ( ( M `  c )  =  t  ->  (
( M `  c
)  e.  ( T  i^i  ~P C )  <-> 
t  e.  ( T  i^i  ~P C ) ) )
4341, 42syl5ibcom 212 . . . . . 6  |-  ( (
ph  /\  c  e.  S )  ->  (
( M `  c
)  =  t  -> 
t  e.  ( T  i^i  ~P C ) ) )
4443rexlimdva 2790 . . . . 5  |-  ( ph  ->  ( E. c  e.  S  ( M `  c )  =  t  ->  t  e.  ( T  i^i  ~P C
) ) )
45 eqid 2404 . . . . . . . 8  |-  U_ f  e.  t  ( O `  ( L `  f
) )  =  U_ f  e.  t  ( O `  ( L `  f ) )
467adantr 452 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
47 inss1 3521 . . . . . . . . . 10  |-  ( T  i^i  ~P C ) 
C_  T
4847sseli 3304 . . . . . . . . 9  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  e.  T )
4948adantl 453 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  t  e.  T )
50 inss2 3522 . . . . . . . . . . 11  |-  ( T  i^i  ~P C ) 
C_  ~P C
5150sseli 3304 . . . . . . . . . 10  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  e.  ~P C )
5251elpwid 3768 . . . . . . . . 9  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  C_  C )
5352adantl 453 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  t  C_  C )
548, 12, 9, 10, 1, 11, 30, 31, 32, 45, 46, 49, 53lcfr 32068 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  U_ f  e.  t  ( O `  ( L `  f
) )  e.  S
)
558, 12, 13, 9, 10, 1, 11, 30, 31, 32, 46, 49, 53, 45mapdrval 32130 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  ( M `  U_ f  e.  t  ( O `  ( L `  f ) ) )  =  t )
56 fveq2 5687 . . . . . . . . 9  |-  ( c  =  U_ f  e.  t  ( O `  ( L `  f ) )  ->  ( M `  c )  =  ( M `  U_ f  e.  t  ( O `  ( L `  f
) ) ) )
5756eqeq1d 2412 . . . . . . . 8  |-  ( c  =  U_ f  e.  t  ( O `  ( L `  f ) )  ->  ( ( M `  c )  =  t  <->  ( M `  U_ f  e.  t  ( O `  ( L `
 f ) ) )  =  t ) )
5857rspcev 3012 . . . . . . 7  |-  ( (
U_ f  e.  t  ( O `  ( L `  f )
)  e.  S  /\  ( M `  U_ f  e.  t  ( O `  ( L `  f
) ) )  =  t )  ->  E. c  e.  S  ( M `  c )  =  t )
5954, 55, 58syl2anc 643 . . . . . 6  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  E. c  e.  S  ( M `  c )  =  t )
6059ex 424 . . . . 5  |-  ( ph  ->  ( t  e.  ( T  i^i  ~P C
)  ->  E. c  e.  S  ( M `  c )  =  t ) )
6144, 60impbid 184 . . . 4  |-  ( ph  ->  ( E. c  e.  S  ( M `  c )  =  t  <-> 
t  e.  ( T  i^i  ~P C ) ) )
6226, 61bitrd 245 . . 3  |-  ( ph  ->  ( t  e.  ran  M  <-> 
t  e.  ( T  i^i  ~P C ) ) )
6362eqrdv 2402 . 2  |-  ( ph  ->  ran  M  =  ( T  i^i  ~P C
) )
647adantr 452 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
65 simprl 733 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
t  e.  S )
66 simprr 734 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  ->  u  e.  S )
678, 9, 10, 13, 64, 65, 66mapd11 32122 . . . 4  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( ( M `  t )  =  ( M `  u )  <-> 
t  =  u ) )
6867biimpd 199 . . 3  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( ( M `  t )  =  ( M `  u )  ->  t  =  u ) )
6968ralrimivva 2758 . 2  |-  ( ph  ->  A. t  e.  S  A. u  e.  S  ( ( M `  t )  =  ( M `  u )  ->  t  =  u ) )
70 dff1o6 5972 . 2  |-  ( M : S -1-1-onto-> ( T  i^i  ~P C )  <->  ( M  Fn  S  /\  ran  M  =  ( T  i^i  ~P C )  /\  A. t  e.  S  A. u  e.  S  (
( M `  t
)  =  ( M `
 u )  -> 
t  =  u ) ) )
7117, 63, 69, 70syl3anbrc 1138 1  |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667   {crab 2670   _Vcvv 2916    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   U_ciun 4053    e. cmpt 4226   ran crn 4838    Fn wfn 5408   -1-1-onto->wf1o 5412   ` cfv 5413   LSubSpclss 15963  LFnlclfn 29540  LKerclk 29568  LDualcld 29606   HLchlt 29833   LHypclh 30466   DVecHcdvh 31561   ocHcoch 31830  mapdcmpd 32107
This theorem is referenced by:  mapdrn  32132  mapdcnvcl  32135  mapdcl  32136  mapdcnvid1N  32137  mapdcnvid2  32140
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-fal 1326  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-tpos 6438  df-undef 6502  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-n0 10178  df-z 10239  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-0g 13682  df-mre 13766  df-mrc 13767  df-acs 13769  df-poset 14358  df-plt 14370  df-lub 14386  df-glb 14387  df-join 14388  df-meet 14389  df-p0 14423  df-p1 14424  df-lat 14430  df-clat 14492  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-cntz 15071  df-oppg 15097  df-lsm 15225  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-drng 15792  df-lmod 15907  df-lss 15964  df-lsp 16003  df-lvec 16130  df-lsatoms 29459  df-lshyp 29460  df-lcv 29502  df-lfl 29541  df-lkr 29569  df-ldual 29607  df-oposet 29659  df-ol 29661  df-oml 29662  df-covers 29749  df-ats 29750  df-atl 29781  df-cvlat 29805  df-hlat 29834  df-llines 29980  df-lplanes 29981  df-lvols 29982  df-lines 29983  df-psubsp 29985  df-pmap 29986  df-padd 30278  df-lhyp 30470  df-laut 30471  df-ldil 30586  df-ltrn 30587  df-trl 30641  df-tgrp 31225  df-tendo 31237  df-edring 31239  df-dveca 31485  df-disoa 31512  df-dvech 31562  df-dib 31622  df-dic 31656  df-dih 31712  df-doch 31831  df-djh 31878  df-mapd 32108
  Copyright terms: Public domain W3C validator