Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapd1o Structured version   Unicode version

Theorem mapd1o 37476
Description: The map defined by df-mapd 37453 is one-to-one and onto the set of dual subspaces of functionals with closed kernels. This shows  M satisfies part of the definition of projectivity of [Baer] p. 40. TODO: change theorems leading to this (lcfr 37413, mapdrval 37475, lclkrs 37367, lclkr 37361,...) to use  T  i^i  ~P C? TODO: maybe get rid of $d's for  g vs.  K U W,. propagate to mapdrn 37477 and any others. (Contributed by NM, 12-Mar-2015.)
Hypotheses
Ref Expression
mapd1o.h  |-  H  =  ( LHyp `  K
)
mapd1o.o  |-  O  =  ( ( ocH `  K
) `  W )
mapd1o.m  |-  M  =  ( (mapd `  K
) `  W )
mapd1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
mapd1o.s  |-  S  =  ( LSubSp `  U )
mapd1o.f  |-  F  =  (LFnl `  U )
mapd1o.l  |-  L  =  (LKer `  U )
mapd1o.d  |-  D  =  (LDual `  U )
mapd1o.t  |-  T  =  ( LSubSp `  D )
mapd1o.c  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
mapd1o.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
mapd1o  |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
Distinct variable groups:    g, F    g, K    g, L    g, O    U, g    g, W
Allowed substitution hints:    ph( g)    C( g)    D( g)    S( g)    T( g)    H( g)    M( g)

Proof of Theorem mapd1o
Dummy variables  f 
c  t  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mapd1o.f . . . . . 6  |-  F  =  (LFnl `  U )
2 fvex 5882 . . . . . 6  |-  (LFnl `  U )  e.  _V
31, 2eqeltri 2541 . . . . 5  |-  F  e. 
_V
43rabex 4607 . . . 4  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) }  e.  _V
5 eqid 2457 . . . 4  |-  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )
64, 5fnmpti 5715 . . 3  |-  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } )  Fn  S
7 mapd1o.k . . . . 5  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
8 mapd1o.h . . . . . 6  |-  H  =  ( LHyp `  K
)
9 mapd1o.u . . . . . 6  |-  U  =  ( ( DVecH `  K
) `  W )
10 mapd1o.s . . . . . 6  |-  S  =  ( LSubSp `  U )
11 mapd1o.l . . . . . 6  |-  L  =  (LKer `  U )
12 mapd1o.o . . . . . 6  |-  O  =  ( ( ocH `  K
) `  W )
13 mapd1o.m . . . . . 6  |-  M  =  ( (mapd `  K
) `  W )
148, 9, 10, 1, 11, 12, 13mapdfval 37455 . . . . 5  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } ) )
157, 14syl 16 . . . 4  |-  ( ph  ->  M  =  ( t  e.  S  |->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  t ) } ) )
1615fneq1d 5677 . . 3  |-  ( ph  ->  ( M  Fn  S  <->  ( t  e.  S  |->  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  t ) } )  Fn  S ) )
176, 16mpbiri 233 . 2  |-  ( ph  ->  M  Fn  S )
183rabex 4607 . . . . . . 7  |-  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) }  e.  _V
19 eqid 2457 . . . . . . 7  |-  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `
 ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )
2018, 19fnmpti 5715 . . . . . 6  |-  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } )  Fn  S
218, 9, 10, 1, 11, 12, 13mapdfval 37455 . . . . . . . 8  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  M  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } ) )
227, 21syl 16 . . . . . . 7  |-  ( ph  ->  M  =  ( t  e.  S  |->  { g  e.  F  |  ( ( O `  ( O `  ( L `  g ) ) )  =  ( L `  g )  /\  ( O `  ( L `  g ) )  C_  t ) } ) )
2322fneq1d 5677 . . . . . 6  |-  ( ph  ->  ( M  Fn  S  <->  ( t  e.  S  |->  { g  e.  F  | 
( ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g )  /\  ( O `  ( L `
 g ) ) 
C_  t ) } )  Fn  S ) )
2420, 23mpbiri 233 . . . . 5  |-  ( ph  ->  M  Fn  S )
25 fvelrnb 5920 . . . . 5  |-  ( M  Fn  S  ->  (
t  e.  ran  M  <->  E. c  e.  S  ( M `  c )  =  t ) )
2624, 25syl 16 . . . 4  |-  ( ph  ->  ( t  e.  ran  M  <->  E. c  e.  S  ( M `  c )  =  t ) )
277adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  ( K  e.  HL  /\  W  e.  H ) )
28 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  c  e.  S )
298, 9, 10, 1, 11, 12, 13, 27, 28mapdval 37456 . . . . . . . 8  |-  ( (
ph  /\  c  e.  S )  ->  ( M `  c )  =  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) } )
30 mapd1o.d . . . . . . . . . 10  |-  D  =  (LDual `  U )
31 mapd1o.t . . . . . . . . . 10  |-  T  =  ( LSubSp `  D )
32 mapd1o.c . . . . . . . . . 10  |-  C  =  { g  e.  F  |  ( O `  ( O `  ( L `
 g ) ) )  =  ( L `
 g ) }
33 eqid 2457 . . . . . . . . . 10  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  =  { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }
348, 12, 9, 10, 1, 11, 30, 31, 32, 33, 27, 28lclkrs2 37368 . . . . . . . . 9  |-  ( (
ph  /\  c  e.  S )  ->  ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) } 
C_  C ) )
35 elin 3683 . . . . . . . . . 10  |-  ( { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ( T  i^i  ~P C )  <->  ( {
f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  T  /\  {
f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C ) )
363rabex 4607 . . . . . . . . . . . 12  |-  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  _V
3736elpw 4021 . . . . . . . . . . 11  |-  ( { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C  <->  { f  e.  F  |  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  C_  C )
3837anbi2i 694 . . . . . . . . . 10  |-  ( ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) }  e.  ~P C )  <-> 
( { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  |  ( ( O `  ( O `
 ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  C_  C ) )
3935, 38bitr2i 250 . . . . . . . . 9  |-  ( ( { f  e.  F  |  ( ( O `
 ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  T  /\  { f  e.  F  | 
( ( O `  ( O `  ( L `
 f ) ) )  =  ( L `
 f )  /\  ( O `  ( L `
 f ) ) 
C_  c ) } 
C_  C )  <->  { f  e.  F  |  (
( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  ( T  i^i  ~P C
) )
4034, 39sylib 196 . . . . . . . 8  |-  ( (
ph  /\  c  e.  S )  ->  { f  e.  F  |  ( ( O `  ( O `  ( L `  f ) ) )  =  ( L `  f )  /\  ( O `  ( L `  f ) )  C_  c ) }  e.  ( T  i^i  ~P C
) )
4129, 40eqeltrd 2545 . . . . . . 7  |-  ( (
ph  /\  c  e.  S )  ->  ( M `  c )  e.  ( T  i^i  ~P C ) )
42 eleq1 2529 . . . . . . 7  |-  ( ( M `  c )  =  t  ->  (
( M `  c
)  e.  ( T  i^i  ~P C )  <-> 
t  e.  ( T  i^i  ~P C ) ) )
4341, 42syl5ibcom 220 . . . . . 6  |-  ( (
ph  /\  c  e.  S )  ->  (
( M `  c
)  =  t  -> 
t  e.  ( T  i^i  ~P C ) ) )
4443rexlimdva 2949 . . . . 5  |-  ( ph  ->  ( E. c  e.  S  ( M `  c )  =  t  ->  t  e.  ( T  i^i  ~P C
) ) )
45 eqid 2457 . . . . . . . 8  |-  U_ f  e.  t  ( O `  ( L `  f
) )  =  U_ f  e.  t  ( O `  ( L `  f ) )
467adantr 465 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
47 inss1 3714 . . . . . . . . . 10  |-  ( T  i^i  ~P C ) 
C_  T
4847sseli 3495 . . . . . . . . 9  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  e.  T )
4948adantl 466 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  t  e.  T )
50 inss2 3715 . . . . . . . . . . 11  |-  ( T  i^i  ~P C ) 
C_  ~P C
5150sseli 3495 . . . . . . . . . 10  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  e.  ~P C )
5251elpwid 4025 . . . . . . . . 9  |-  ( t  e.  ( T  i^i  ~P C )  ->  t  C_  C )
5352adantl 466 . . . . . . . 8  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  t  C_  C )
548, 12, 9, 10, 1, 11, 30, 31, 32, 45, 46, 49, 53lcfr 37413 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  U_ f  e.  t  ( O `  ( L `  f
) )  e.  S
)
558, 12, 13, 9, 10, 1, 11, 30, 31, 32, 46, 49, 53, 45mapdrval 37475 . . . . . . 7  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  ( M `  U_ f  e.  t  ( O `  ( L `  f ) ) )  =  t )
56 fveq2 5872 . . . . . . . . 9  |-  ( c  =  U_ f  e.  t  ( O `  ( L `  f ) )  ->  ( M `  c )  =  ( M `  U_ f  e.  t  ( O `  ( L `  f
) ) ) )
5756eqeq1d 2459 . . . . . . . 8  |-  ( c  =  U_ f  e.  t  ( O `  ( L `  f ) )  ->  ( ( M `  c )  =  t  <->  ( M `  U_ f  e.  t  ( O `  ( L `
 f ) ) )  =  t ) )
5857rspcev 3210 . . . . . . 7  |-  ( (
U_ f  e.  t  ( O `  ( L `  f )
)  e.  S  /\  ( M `  U_ f  e.  t  ( O `  ( L `  f
) ) )  =  t )  ->  E. c  e.  S  ( M `  c )  =  t )
5954, 55, 58syl2anc 661 . . . . . 6  |-  ( (
ph  /\  t  e.  ( T  i^i  ~P C
) )  ->  E. c  e.  S  ( M `  c )  =  t )
6059ex 434 . . . . 5  |-  ( ph  ->  ( t  e.  ( T  i^i  ~P C
)  ->  E. c  e.  S  ( M `  c )  =  t ) )
6144, 60impbid 191 . . . 4  |-  ( ph  ->  ( E. c  e.  S  ( M `  c )  =  t  <-> 
t  e.  ( T  i^i  ~P C ) ) )
6226, 61bitrd 253 . . 3  |-  ( ph  ->  ( t  e.  ran  M  <-> 
t  e.  ( T  i^i  ~P C ) ) )
6362eqrdv 2454 . 2  |-  ( ph  ->  ran  M  =  ( T  i^i  ~P C
) )
647adantr 465 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
65 simprl 756 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
t  e.  S )
66 simprr 757 . . . . 5  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  ->  u  e.  S )
678, 9, 10, 13, 64, 65, 66mapd11 37467 . . . 4  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( ( M `  t )  =  ( M `  u )  <-> 
t  =  u ) )
6867biimpd 207 . . 3  |-  ( (
ph  /\  ( t  e.  S  /\  u  e.  S ) )  -> 
( ( M `  t )  =  ( M `  u )  ->  t  =  u ) )
6968ralrimivva 2878 . 2  |-  ( ph  ->  A. t  e.  S  A. u  e.  S  ( ( M `  t )  =  ( M `  u )  ->  t  =  u ) )
70 dff1o6 6182 . 2  |-  ( M : S -1-1-onto-> ( T  i^i  ~P C )  <->  ( M  Fn  S  /\  ran  M  =  ( T  i^i  ~P C )  /\  A. t  e.  S  A. u  e.  S  (
( M `  t
)  =  ( M `
 u )  -> 
t  =  u ) ) )
7117, 63, 69, 70syl3anbrc 1180 1  |-  ( ph  ->  M : S -1-1-onto-> ( T  i^i  ~P C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    i^i cin 3470    C_ wss 3471   ~Pcpw 4015   U_ciun 4332    |-> cmpt 4515   ran crn 5009    Fn wfn 5589   -1-1-onto->wf1o 5593   ` cfv 5594   LSubSpclss 17704  LFnlclfn 34883  LKerclk 34911  LDualcld 34949   HLchlt 35176   LHypclh 35809   DVecHcdvh 36906   ocHcoch 37175  mapdcmpd 37452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-riotaBAD 34785
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-undef 7020  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-sca 14727  df-vsca 14728  df-0g 14858  df-mre 15002  df-mrc 15003  df-acs 15005  df-preset 15683  df-poset 15701  df-plt 15714  df-lub 15730  df-glb 15731  df-join 15732  df-meet 15733  df-p0 15795  df-p1 15796  df-lat 15802  df-clat 15864  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-grp 16183  df-minusg 16184  df-sbg 16185  df-subg 16324  df-cntz 16481  df-oppg 16507  df-lsm 16782  df-cmn 16926  df-abl 16927  df-mgp 17268  df-ur 17280  df-ring 17326  df-oppr 17398  df-dvdsr 17416  df-unit 17417  df-invr 17447  df-dvr 17458  df-drng 17524  df-lmod 17640  df-lss 17705  df-lsp 17744  df-lvec 17875  df-lsatoms 34802  df-lshyp 34803  df-lcv 34845  df-lfl 34884  df-lkr 34912  df-ldual 34950  df-oposet 35002  df-ol 35004  df-oml 35005  df-covers 35092  df-ats 35093  df-atl 35124  df-cvlat 35148  df-hlat 35177  df-llines 35323  df-lplanes 35324  df-lvols 35325  df-lines 35326  df-psubsp 35328  df-pmap 35329  df-padd 35621  df-lhyp 35813  df-laut 35814  df-ldil 35929  df-ltrn 35930  df-trl 35985  df-tgrp 36570  df-tendo 36582  df-edring 36584  df-dveca 36830  df-disoa 36857  df-dvech 36907  df-dib 36967  df-dic 37001  df-dih 37057  df-doch 37176  df-djh 37223  df-mapd 37453
This theorem is referenced by:  mapdrn  37477  mapdcnvcl  37480  mapdcl  37481  mapdcnvid1N  37482  mapdcnvid2  37485
  Copyright terms: Public domain W3C validator