MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapcdaen Unicode version

Theorem mapcdaen 7694
Description: Sum of exponents law for cardinal arithmetic. Theorem 6I(4) of [Enderton] p. 142. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapcdaen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )

Proof of Theorem mapcdaen
StepHypRef Expression
1 cdaval 7680 . . . . 5  |-  ( ( B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
213adant1 978 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  +c  C
)  =  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o }
) ) )
32oveq2d 5726 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) )  =  ( A  ^m  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) ) )
4 simp2 961 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
5 snex 4110 . . . . 5  |-  { (/) }  e.  _V
6 xpexg 4707 . . . . 5  |-  ( ( B  e.  W  /\  {
(/) }  e.  _V )  ->  ( B  X.  { (/) } )  e. 
_V )
74, 5, 6sylancl 646 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  { (/)
} )  e.  _V )
8 simp3 962 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
9 snex 4110 . . . . 5  |-  { 1o }  e.  _V
10 xpexg 4707 . . . . 5  |-  ( ( C  e.  X  /\  { 1o }  e.  _V )  ->  ( C  X.  { 1o } )  e. 
_V )
118, 9, 10sylancl 646 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( C  X.  { 1o } )  e.  _V )
12 simp1 960 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
13 xp01disj 6381 . . . . 5  |-  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o }
) )  =  (/)
1413a1i 12 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( B  X.  { (/) } )  i^i  ( C  X.  { 1o } ) )  =  (/) )
15 mapunen 6915 . . . 4  |-  ( ( ( ( B  X.  { (/) } )  e. 
_V  /\  ( C  X.  { 1o } )  e.  _V  /\  A  e.  V )  /\  (
( B  X.  { (/)
} )  i^i  ( C  X.  { 1o }
) )  =  (/) )  ->  ( A  ^m  ( ( B  X.  { (/) } )  u.  ( C  X.  { 1o } ) ) ) 
~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) )
167, 11, 12, 14, 15syl31anc 1190 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  (
( B  X.  { (/)
} )  u.  ( C  X.  { 1o }
) ) )  ~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) )
173, 16eqbrtrd 3940 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) )
18 enrefg 6779 . . . . 5  |-  ( A  e.  V  ->  A  ~~  A )
1912, 18syl 17 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  A )
20 0ex 4047 . . . . 5  |-  (/)  e.  _V
21 xpsneng 6832 . . . . 5  |-  ( ( B  e.  W  /\  (/) 
e.  _V )  ->  ( B  X.  { (/) } ) 
~~  B )
224, 20, 21sylancl 646 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( B  X.  { (/)
} )  ~~  B
)
23 mapen 6910 . . . 4  |-  ( ( A  ~~  A  /\  ( B  X.  { (/) } )  ~~  B )  ->  ( A  ^m  ( B  X.  { (/) } ) )  ~~  ( A  ^m  B ) )
2419, 22, 23syl2anc 645 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  X.  { (/) } ) )  ~~  ( A  ^m  B ) )
25 1on 6372 . . . . 5  |-  1o  e.  On
26 xpsneng 6832 . . . . 5  |-  ( ( C  e.  X  /\  1o  e.  On )  -> 
( C  X.  { 1o } )  ~~  C
)
278, 25, 26sylancl 646 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( C  X.  { 1o } )  ~~  C
)
28 mapen 6910 . . . 4  |-  ( ( A  ~~  A  /\  ( C  X.  { 1o } )  ~~  C
)  ->  ( A  ^m  ( C  X.  { 1o } ) )  ~~  ( A  ^m  C ) )
2919, 27, 28syl2anc 645 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( C  X.  { 1o }
) )  ~~  ( A  ^m  C ) )
30 xpen 6909 . . 3  |-  ( ( ( A  ^m  ( B  X.  { (/) } ) )  ~~  ( A  ^m  B )  /\  ( A  ^m  ( C  X.  { 1o }
) )  ~~  ( A  ^m  C ) )  ->  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )
3124, 29, 30syl2anc 645 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) )  ~~  ( ( A  ^m  B )  X.  ( A  ^m  C ) ) )
32 entr 6798 . 2  |-  ( ( ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) )  /\  ( ( A  ^m  ( B  X.  { (/) } ) )  X.  ( A  ^m  ( C  X.  { 1o } ) ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )  -> 
( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )
3317, 31, 32syl2anc 645 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  ^m  ( B  +c  C ) ) 
~~  ( ( A  ^m  B )  X.  ( A  ^m  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    = wceq 1619    e. wcel 1621   _Vcvv 2727    u. cun 3076    i^i cin 3077   (/)c0 3362   {csn 3544   class class class wbr 3920   Oncon0 4285    X. cxp 4578  (class class class)co 5710   1oc1o 6358    ^m cmap 6658    ~~ cen 6746    +c ccda 7677
This theorem is referenced by:  pwcdaen  7695
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-suc 4291  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-1o 6365  df-er 6546  df-map 6660  df-en 6750  df-dom 6751  df-cda 7678
  Copyright terms: Public domain W3C validator