MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  map1 Structured version   Unicode version

Theorem map1 7586
Description: Set exponentiation: ordinal 1 to any set is equinumerous to ordinal 1. Exercise 4.42(b) of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.)
Assertion
Ref Expression
map1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )

Proof of Theorem map1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 6302 . . 3  |-  ( 1o 
^m  A )  e. 
_V
21a1i 11 . 2  |-  ( A  e.  V  ->  ( 1o  ^m  A )  e. 
_V )
3 df1o2 7134 . . . 4  |-  1o  =  { (/) }
4 p0ex 4629 . . . 4  |-  { (/) }  e.  _V
53, 4eqeltri 2546 . . 3  |-  1o  e.  _V
65a1i 11 . 2  |-  ( A  e.  V  ->  1o  e.  _V )
7 0ex 4572 . . 3  |-  (/)  e.  _V
87a1ii 27 . 2  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  ->  (/) 
e.  _V ) )
9 xpexg 6704 . . . 4  |-  ( ( A  e.  V  /\  {
(/) }  e.  _V )  ->  ( A  X.  { (/) } )  e. 
_V )
104, 9mpan2 671 . . 3  |-  ( A  e.  V  ->  ( A  X.  { (/) } )  e.  _V )
1110a1d 25 . 2  |-  ( A  e.  V  ->  (
y  e.  1o  ->  ( A  X.  { (/) } )  e.  _V )
)
12 el1o 7141 . . . . 5  |-  ( y  e.  1o  <->  y  =  (/) )
1312a1i 11 . . . 4  |-  ( A  e.  V  ->  (
y  e.  1o  <->  y  =  (/) ) )
143oveq1i 6287 . . . . . . 7  |-  ( 1o 
^m  A )  =  ( { (/) }  ^m  A )
1514eleq2i 2540 . . . . . 6  |-  ( x  e.  ( 1o  ^m  A )  <->  x  e.  ( { (/) }  ^m  A
) )
16 elmapg 7425 . . . . . . 7  |-  ( ( { (/) }  e.  _V  /\  A  e.  V )  ->  ( x  e.  ( { (/) }  ^m  A )  <->  x : A
--> { (/) } ) )
174, 16mpan 670 . . . . . 6  |-  ( A  e.  V  ->  (
x  e.  ( {
(/) }  ^m  A )  <-> 
x : A --> { (/) } ) )
1815, 17syl5bb 257 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( 1o 
^m  A )  <->  x : A
--> { (/) } ) )
197fconst2 6110 . . . . 5  |-  ( x : A --> { (/) }  <-> 
x  =  ( A  X.  { (/) } ) )
2018, 19syl6rbb 262 . . . 4  |-  ( A  e.  V  ->  (
x  =  ( A  X.  { (/) } )  <-> 
x  e.  ( 1o 
^m  A ) ) )
2113, 20anbi12d 710 . . 3  |-  ( A  e.  V  ->  (
( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) )  <->  ( y  =  (/)  /\  x  e.  ( 1o  ^m  A ) ) ) )
22 ancom 450 . . 3  |-  ( ( y  =  (/)  /\  x  e.  ( 1o  ^m  A
) )  <->  ( x  e.  ( 1o  ^m  A
)  /\  y  =  (/) ) )
2321, 22syl6rbb 262 . 2  |-  ( A  e.  V  ->  (
( x  e.  ( 1o  ^m  A )  /\  y  =  (/) ) 
<->  ( y  e.  1o  /\  x  =  ( A  X.  { (/) } ) ) ) )
242, 6, 8, 11, 23en2d 7543 1  |-  ( A  e.  V  ->  ( 1o  ^m  A )  ~~  1o )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762   _Vcvv 3108   (/)c0 3780   {csn 4022   class class class wbr 4442    X. cxp 4992   -->wf 5577  (class class class)co 6277   1oc1o 7115    ^m cmap 7412    ~~ cen 7505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-1o 7122  df-map 7414  df-en 7509
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator