MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuvs2 Structured version   Unicode version

Theorem mamuvs2 18315
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamuvs2.r  |-  ( ph  ->  R  e.  CRing )
mamuvs2.b  |-  B  =  ( Base `  R
)
mamuvs2.t  |-  .x.  =  ( .r `  R )
mamuvs2.f  |-  F  =  ( R maMul  <. M ,  N ,  O >. )
mamuvs2.m  |-  ( ph  ->  M  e.  Fin )
mamuvs2.n  |-  ( ph  ->  N  e.  Fin )
mamuvs2.o  |-  ( ph  ->  O  e.  Fin )
mamuvs2.x  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
mamuvs2.y  |-  ( ph  ->  Y  e.  B )
mamuvs2.z  |-  ( ph  ->  Z  e.  ( B  ^m  ( N  X.  O ) ) )
Assertion
Ref Expression
mamuvs2  |-  ( ph  ->  ( X F ( ( ( N  X.  O )  X.  { Y } )  oF  .x.  Z ) )  =  ( ( ( M  X.  O )  X.  { Y }
)  oF  .x.  ( X F Z ) ) )

Proof of Theorem mamuvs2
Dummy variables  i 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ov 6099 . . . . . . . . . 10  |-  ( j ( ( ( N  X.  O )  X. 
{ Y } )  oF  .x.  Z
) k )  =  ( ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) `  <. j ,  k >. )
2 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  j  e.  N )
3 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  k  e.  O )
4 opelxpi 4876 . . . . . . . . . . . 12  |-  ( ( j  e.  N  /\  k  e.  O )  -> 
<. j ,  k >.  e.  ( N  X.  O
) )
52, 3, 4syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  <. j ,  k >.  e.  ( N  X.  O ) )
6 mamuvs2.n . . . . . . . . . . . . . 14  |-  ( ph  ->  N  e.  Fin )
7 mamuvs2.o . . . . . . . . . . . . . 14  |-  ( ph  ->  O  e.  Fin )
8 xpfi 7588 . . . . . . . . . . . . . 14  |-  ( ( N  e.  Fin  /\  O  e.  Fin )  ->  ( N  X.  O
)  e.  Fin )
96, 7, 8syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( N  X.  O
)  e.  Fin )
109ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  ( N  X.  O )  e. 
Fin )
11 mamuvs2.y . . . . . . . . . . . . 13  |-  ( ph  ->  Y  e.  B )
1211ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  Y  e.  B )
13 mamuvs2.z . . . . . . . . . . . . . 14  |-  ( ph  ->  Z  e.  ( B  ^m  ( N  X.  O ) ) )
14 elmapi 7239 . . . . . . . . . . . . . 14  |-  ( Z  e.  ( B  ^m  ( N  X.  O
) )  ->  Z : ( N  X.  O ) --> B )
15 ffn 5564 . . . . . . . . . . . . . 14  |-  ( Z : ( N  X.  O ) --> B  ->  Z  Fn  ( N  X.  O ) )
1613, 14, 153syl 20 . . . . . . . . . . . . 13  |-  ( ph  ->  Z  Fn  ( N  X.  O ) )
1716ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  Z  Fn  ( N  X.  O
) )
18 df-ov 6099 . . . . . . . . . . . . . 14  |-  ( j Z k )  =  ( Z `  <. j ,  k >. )
1918eqcomi 2447 . . . . . . . . . . . . 13  |-  ( Z `
 <. j ,  k
>. )  =  (
j Z k )
2019a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( i  e.  M  /\  k  e.  O
) )  /\  j  e.  N )  /\  <. j ,  k >.  e.  ( N  X.  O ) )  ->  ( Z `  <. j ,  k
>. )  =  (
j Z k ) )
2110, 12, 17, 20ofc1 6348 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( i  e.  M  /\  k  e.  O
) )  /\  j  e.  N )  /\  <. j ,  k >.  e.  ( N  X.  O ) )  ->  ( (
( ( N  X.  O )  X.  { Y } )  oF  .x.  Z ) `  <. j ,  k >.
)  =  ( Y 
.x.  ( j Z k ) ) )
225, 21mpdan 668 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (
( ( ( N  X.  O )  X. 
{ Y } )  oF  .x.  Z
) `  <. j ,  k >. )  =  ( Y  .x.  ( j Z k ) ) )
231, 22syl5eq 2487 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (
j ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) k )  =  ( Y  .x.  ( j Z k ) ) )
2423oveq2d 6112 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (
( i X j )  .x.  ( j ( ( ( N  X.  O )  X. 
{ Y } )  oF  .x.  Z
) k ) )  =  ( ( i X j )  .x.  ( Y  .x.  ( j Z k ) ) ) )
25 mamuvs2.r . . . . . . . . . . 11  |-  ( ph  ->  R  e.  CRing )
26 eqid 2443 . . . . . . . . . . . 12  |-  (mulGrp `  R )  =  (mulGrp `  R )
2726crngmgp 16658 . . . . . . . . . . 11  |-  ( R  e.  CRing  ->  (mulGrp `  R
)  e. CMnd )
2825, 27syl 16 . . . . . . . . . 10  |-  ( ph  ->  (mulGrp `  R )  e. CMnd )
2928ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (mulGrp `  R )  e. CMnd )
30 mamuvs2.x . . . . . . . . . . . 12  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
31 elmapi 7239 . . . . . . . . . . . 12  |-  ( X  e.  ( B  ^m  ( M  X.  N
) )  ->  X : ( M  X.  N ) --> B )
3230, 31syl 16 . . . . . . . . . . 11  |-  ( ph  ->  X : ( M  X.  N ) --> B )
3332ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  X : ( M  X.  N ) --> B )
34 simplrl 759 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  i  e.  M )
3533, 34, 2fovrnd 6240 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (
i X j )  e.  B )
3613, 14syl 16 . . . . . . . . . . 11  |-  ( ph  ->  Z : ( N  X.  O ) --> B )
3736ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  Z : ( N  X.  O ) --> B )
3837, 2, 3fovrnd 6240 . . . . . . . . 9  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (
j Z k )  e.  B )
39 mamuvs2.b . . . . . . . . . . 11  |-  B  =  ( Base `  R
)
4026, 39mgpbas 16602 . . . . . . . . . 10  |-  B  =  ( Base `  (mulGrp `  R ) )
41 mamuvs2.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  R )
4226, 41mgpplusg 16600 . . . . . . . . . 10  |-  .x.  =  ( +g  `  (mulGrp `  R ) )
4340, 42cmn12 16302 . . . . . . . . 9  |-  ( ( (mulGrp `  R )  e. CMnd  /\  ( ( i X j )  e.  B  /\  Y  e.  B  /\  ( j Z k )  e.  B ) )  -> 
( ( i X j )  .x.  ( Y  .x.  ( j Z k ) ) )  =  ( Y  .x.  ( ( i X j )  .x.  (
j Z k ) ) ) )
4429, 35, 12, 38, 43syl13anc 1220 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (
( i X j )  .x.  ( Y 
.x.  ( j Z k ) ) )  =  ( Y  .x.  ( ( i X j )  .x.  (
j Z k ) ) ) )
4524, 44eqtrd 2475 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (
( i X j )  .x.  ( j ( ( ( N  X.  O )  X. 
{ Y } )  oF  .x.  Z
) k ) )  =  ( Y  .x.  ( ( i X j )  .x.  (
j Z k ) ) ) )
4645mpteq2dva 4383 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( j  e.  N  |->  ( ( i X j )  .x.  (
j ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) k ) ) )  =  ( j  e.  N  |->  ( Y  .x.  ( ( i X j ) 
.x.  ( j Z k ) ) ) ) )
4746oveq2d 6112 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( R  gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) k ) ) ) )  =  ( R  gsumg  ( j  e.  N  |->  ( Y  .x.  (
( i X j )  .x.  ( j Z k ) ) ) ) ) )
48 eqid 2443 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
49 eqid 2443 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
50 crngrng 16660 . . . . . . . 8  |-  ( R  e.  CRing  ->  R  e.  Ring )
5125, 50syl 16 . . . . . . 7  |-  ( ph  ->  R  e.  Ring )
5251adantr 465 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  ->  R  e.  Ring )
536adantr 465 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  ->  N  e.  Fin )
5411adantr 465 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  ->  Y  e.  B )
5551ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  R  e.  Ring )
5639, 41rngcl 16663 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
i X j )  e.  B  /\  (
j Z k )  e.  B )  -> 
( ( i X j )  .x.  (
j Z k ) )  e.  B )
5755, 35, 38, 56syl3anc 1218 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (
( i X j )  .x.  ( j Z k ) )  e.  B )
58 eqid 2443 . . . . . . 7  |-  ( j  e.  N  |->  ( ( i X j ) 
.x.  ( j Z k ) ) )  =  ( j  e.  N  |->  ( ( i X j )  .x.  ( j Z k ) ) )
59 ovex 6121 . . . . . . . 8  |-  ( ( i X j ) 
.x.  ( j Z k ) )  e. 
_V
6059a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  j  e.  N )  ->  (
( i X j )  .x.  ( j Z k ) )  e.  _V )
61 fvex 5706 . . . . . . . 8  |-  ( 0g
`  R )  e. 
_V
6261a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( 0g `  R
)  e.  _V )
6358, 53, 60, 62fsuppmptdm 7636 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( j  e.  N  |->  ( ( i X j )  .x.  (
j Z k ) ) ) finSupp  ( 0g
`  R ) )
6439, 48, 49, 41, 52, 53, 54, 57, 63gsummulc2 16701 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( R  gsumg  ( j  e.  N  |->  ( Y  .x.  (
( i X j )  .x.  ( j Z k ) ) ) ) )  =  ( Y  .x.  ( R  gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Z k ) ) ) ) ) )
6547, 64eqtrd 2475 . . . 4  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( R  gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) k ) ) ) )  =  ( Y  .x.  ( R  gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Z k ) ) ) ) ) )
66 mamuvs2.f . . . . 5  |-  F  =  ( R maMul  <. M ,  N ,  O >. )
6725adantr 465 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  ->  R  e.  CRing )
68 mamuvs2.m . . . . . 6  |-  ( ph  ->  M  e.  Fin )
6968adantr 465 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  ->  M  e.  Fin )
707adantr 465 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  ->  O  e.  Fin )
7130adantr 465 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  ->  X  e.  ( B  ^m  ( M  X.  N
) ) )
72 fconst6g 5604 . . . . . . . . 9  |-  ( Y  e.  B  ->  (
( N  X.  O
)  X.  { Y } ) : ( N  X.  O ) --> B )
7311, 72syl 16 . . . . . . . 8  |-  ( ph  ->  ( ( N  X.  O )  X.  { Y } ) : ( N  X.  O ) --> B )
74 fvex 5706 . . . . . . . . . 10  |-  ( Base `  R )  e.  _V
7539, 74eqeltri 2513 . . . . . . . . 9  |-  B  e. 
_V
76 elmapg 7232 . . . . . . . . 9  |-  ( ( B  e.  _V  /\  ( N  X.  O
)  e.  Fin )  ->  ( ( ( N  X.  O )  X. 
{ Y } )  e.  ( B  ^m  ( N  X.  O
) )  <->  ( ( N  X.  O )  X. 
{ Y } ) : ( N  X.  O ) --> B ) )
7775, 9, 76sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( ( ( N  X.  O )  X. 
{ Y } )  e.  ( B  ^m  ( N  X.  O
) )  <->  ( ( N  X.  O )  X. 
{ Y } ) : ( N  X.  O ) --> B ) )
7873, 77mpbird 232 . . . . . . 7  |-  ( ph  ->  ( ( N  X.  O )  X.  { Y } )  e.  ( B  ^m  ( N  X.  O ) ) )
7939, 41rngvcl 18303 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
( N  X.  O
)  X.  { Y } )  e.  ( B  ^m  ( N  X.  O ) )  /\  Z  e.  ( B  ^m  ( N  X.  O ) ) )  ->  ( (
( N  X.  O
)  X.  { Y } )  oF  .x.  Z )  e.  ( B  ^m  ( N  X.  O ) ) )
8051, 78, 13, 79syl3anc 1218 . . . . . 6  |-  ( ph  ->  ( ( ( N  X.  O )  X. 
{ Y } )  oF  .x.  Z
)  e.  ( B  ^m  ( N  X.  O ) ) )
8180adantr 465 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( ( ( N  X.  O )  X. 
{ Y } )  oF  .x.  Z
)  e.  ( B  ^m  ( N  X.  O ) ) )
82 simprl 755 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
i  e.  M )
83 simprr 756 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
k  e.  O )
8466, 39, 41, 67, 69, 53, 70, 71, 81, 82, 83mamufv 18290 . . . 4  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( i ( X F ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) ) k )  =  ( R 
gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) k ) ) ) ) )
85 df-ov 6099 . . . . 5  |-  ( i ( ( ( M  X.  O )  X. 
{ Y } )  oF  .x.  ( X F Z ) ) k )  =  ( ( ( ( M  X.  O )  X. 
{ Y } )  oF  .x.  ( X F Z ) ) `
 <. i ,  k
>. )
86 opelxpi 4876 . . . . . . 7  |-  ( ( i  e.  M  /\  k  e.  O )  -> 
<. i ,  k >.  e.  ( M  X.  O
) )
8786adantl 466 . . . . . 6  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  ->  <. i ,  k >.  e.  ( M  X.  O
) )
88 xpfi 7588 . . . . . . . . 9  |-  ( ( M  e.  Fin  /\  O  e.  Fin )  ->  ( M  X.  O
)  e.  Fin )
8968, 7, 88syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( M  X.  O
)  e.  Fin )
9089adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( M  X.  O
)  e.  Fin )
9139, 51, 66, 68, 6, 7, 30, 13mamucl 18306 . . . . . . . . 9  |-  ( ph  ->  ( X F Z )  e.  ( B  ^m  ( M  X.  O ) ) )
92 elmapi 7239 . . . . . . . . 9  |-  ( ( X F Z )  e.  ( B  ^m  ( M  X.  O
) )  ->  ( X F Z ) : ( M  X.  O
) --> B )
93 ffn 5564 . . . . . . . . 9  |-  ( ( X F Z ) : ( M  X.  O ) --> B  -> 
( X F Z )  Fn  ( M  X.  O ) )
9491, 92, 933syl 20 . . . . . . . 8  |-  ( ph  ->  ( X F Z )  Fn  ( M  X.  O ) )
9594adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( X F Z )  Fn  ( M  X.  O ) )
96 df-ov 6099 . . . . . . . . 9  |-  ( i ( X F Z ) k )  =  ( ( X F Z ) `  <. i ,  k >. )
9713adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  ->  Z  e.  ( B  ^m  ( N  X.  O
) ) )
9866, 39, 41, 67, 69, 53, 70, 71, 97, 82, 83mamufv 18290 . . . . . . . . 9  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( i ( X F Z ) k )  =  ( R 
gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Z k ) ) ) ) )
9996, 98syl5eqr 2489 . . . . . . . 8  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( ( X F Z ) `  <. i ,  k >. )  =  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) 
.x.  ( j Z k ) ) ) ) )
10099adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  <. i ,  k >.  e.  ( M  X.  O ) )  ->  ( ( X F Z ) `  <. i ,  k >.
)  =  ( R 
gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Z k ) ) ) ) )
10190, 54, 95, 100ofc1 6348 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  O )
)  /\  <. i ,  k >.  e.  ( M  X.  O ) )  ->  ( ( ( ( M  X.  O
)  X.  { Y } )  oF  .x.  ( X F Z ) ) `  <. i ,  k >.
)  =  ( Y 
.x.  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) 
.x.  ( j Z k ) ) ) ) ) )
10287, 101mpdan 668 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( ( ( ( M  X.  O )  X.  { Y }
)  oF  .x.  ( X F Z ) ) `  <. i ,  k >. )  =  ( Y  .x.  ( R  gsumg  ( j  e.  N  |->  ( ( i X j )  .x.  (
j Z k ) ) ) ) ) )
10385, 102syl5eq 2487 . . . 4  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( i ( ( ( M  X.  O
)  X.  { Y } )  oF  .x.  ( X F Z ) ) k )  =  ( Y 
.x.  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) 
.x.  ( j Z k ) ) ) ) ) )
10465, 84, 1033eqtr4d 2485 . . 3  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  O ) )  -> 
( i ( X F ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) ) k )  =  ( i ( ( ( M  X.  O )  X. 
{ Y } )  oF  .x.  ( X F Z ) ) k ) )
105104ralrimivva 2813 . 2  |-  ( ph  ->  A. i  e.  M  A. k  e.  O  ( i ( X F ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) ) k )  =  ( i ( ( ( M  X.  O )  X. 
{ Y } )  oF  .x.  ( X F Z ) ) k ) )
10639, 51, 66, 68, 6, 7, 30, 80mamucl 18306 . . . 4  |-  ( ph  ->  ( X F ( ( ( N  X.  O )  X.  { Y } )  oF  .x.  Z ) )  e.  ( B  ^m  ( M  X.  O
) ) )
107 elmapi 7239 . . . 4  |-  ( ( X F ( ( ( N  X.  O
)  X.  { Y } )  oF  .x.  Z ) )  e.  ( B  ^m  ( M  X.  O
) )  ->  ( X F ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) ) : ( M  X.  O
) --> B )
108 ffn 5564 . . . 4  |-  ( ( X F ( ( ( N  X.  O
)  X.  { Y } )  oF  .x.  Z ) ) : ( M  X.  O ) --> B  -> 
( X F ( ( ( N  X.  O )  X.  { Y } )  oF  .x.  Z ) )  Fn  ( M  X.  O ) )
109106, 107, 1083syl 20 . . 3  |-  ( ph  ->  ( X F ( ( ( N  X.  O )  X.  { Y } )  oF  .x.  Z ) )  Fn  ( M  X.  O ) )
110 fconst6g 5604 . . . . . . 7  |-  ( Y  e.  B  ->  (
( M  X.  O
)  X.  { Y } ) : ( M  X.  O ) --> B )
11111, 110syl 16 . . . . . 6  |-  ( ph  ->  ( ( M  X.  O )  X.  { Y } ) : ( M  X.  O ) --> B )
112 elmapg 7232 . . . . . . 7  |-  ( ( B  e.  _V  /\  ( M  X.  O
)  e.  Fin )  ->  ( ( ( M  X.  O )  X. 
{ Y } )  e.  ( B  ^m  ( M  X.  O
) )  <->  ( ( M  X.  O )  X. 
{ Y } ) : ( M  X.  O ) --> B ) )
11375, 89, 112sylancr 663 . . . . . 6  |-  ( ph  ->  ( ( ( M  X.  O )  X. 
{ Y } )  e.  ( B  ^m  ( M  X.  O
) )  <->  ( ( M  X.  O )  X. 
{ Y } ) : ( M  X.  O ) --> B ) )
114111, 113mpbird 232 . . . . 5  |-  ( ph  ->  ( ( M  X.  O )  X.  { Y } )  e.  ( B  ^m  ( M  X.  O ) ) )
11539, 41rngvcl 18303 . . . . 5  |-  ( ( R  e.  Ring  /\  (
( M  X.  O
)  X.  { Y } )  e.  ( B  ^m  ( M  X.  O ) )  /\  ( X F Z )  e.  ( B  ^m  ( M  X.  O ) ) )  ->  ( (
( M  X.  O
)  X.  { Y } )  oF  .x.  ( X F Z ) )  e.  ( B  ^m  ( M  X.  O ) ) )
11651, 114, 91, 115syl3anc 1218 . . . 4  |-  ( ph  ->  ( ( ( M  X.  O )  X. 
{ Y } )  oF  .x.  ( X F Z ) )  e.  ( B  ^m  ( M  X.  O
) ) )
117 elmapi 7239 . . . 4  |-  ( ( ( ( M  X.  O )  X.  { Y } )  oF  .x.  ( X F Z ) )  e.  ( B  ^m  ( M  X.  O ) )  ->  ( ( ( M  X.  O )  X.  { Y }
)  oF  .x.  ( X F Z ) ) : ( M  X.  O ) --> B )
118 ffn 5564 . . . 4  |-  ( ( ( ( M  X.  O )  X.  { Y } )  oF  .x.  ( X F Z ) ) : ( M  X.  O
) --> B  ->  (
( ( M  X.  O )  X.  { Y } )  oF  .x.  ( X F Z ) )  Fn  ( M  X.  O
) )
119116, 117, 1183syl 20 . . 3  |-  ( ph  ->  ( ( ( M  X.  O )  X. 
{ Y } )  oF  .x.  ( X F Z ) )  Fn  ( M  X.  O ) )
120 eqfnov2 6202 . . 3  |-  ( ( ( X F ( ( ( N  X.  O )  X.  { Y } )  oF  .x.  Z ) )  Fn  ( M  X.  O )  /\  (
( ( M  X.  O )  X.  { Y } )  oF  .x.  ( X F Z ) )  Fn  ( M  X.  O
) )  ->  (
( X F ( ( ( N  X.  O )  X.  { Y } )  oF  .x.  Z ) )  =  ( ( ( M  X.  O )  X.  { Y }
)  oF  .x.  ( X F Z ) )  <->  A. i  e.  M  A. k  e.  O  ( i ( X F ( ( ( N  X.  O )  X.  { Y }
)  oF  .x.  Z ) ) k )  =  ( i ( ( ( M  X.  O )  X. 
{ Y } )  oF  .x.  ( X F Z ) ) k ) ) )
121109, 119, 120syl2anc 661 . 2  |-  ( ph  ->  ( ( X F ( ( ( N  X.  O )  X. 
{ Y } )  oF  .x.  Z
) )  =  ( ( ( M  X.  O )  X.  { Y } )  oF  .x.  ( X F Z ) )  <->  A. i  e.  M  A. k  e.  O  ( i
( X F ( ( ( N  X.  O )  X.  { Y } )  oF  .x.  Z ) ) k )  =  ( i ( ( ( M  X.  O )  X.  { Y }
)  oF  .x.  ( X F Z ) ) k ) ) )
122105, 121mpbird 232 1  |-  ( ph  ->  ( X F ( ( ( N  X.  O )  X.  { Y } )  oF  .x.  Z ) )  =  ( ( ( M  X.  O )  X.  { Y }
)  oF  .x.  ( X F Z ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   _Vcvv 2977   {csn 3882   <.cop 3888   <.cotp 3890    e. cmpt 4355    X. cxp 4843    Fn wfn 5418   -->wf 5419   ` cfv 5423  (class class class)co 6096    oFcof 6323    ^m cmap 7219   Fincfn 7315   Basecbs 14179   +g cplusg 14243   .rcmulr 14244   0gc0g 14383    gsumg cgsu 14384  CMndccmn 16282  mulGrpcmgp 16596   Ringcrg 16650   CRingccrg 16651   maMul cmmul 18284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4408  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-1cn 9345  ax-icn 9346  ax-addcl 9347  ax-addrcl 9348  ax-mulcl 9349  ax-mulrcl 9350  ax-mulcom 9351  ax-addass 9352  ax-mulass 9353  ax-distr 9354  ax-i2m1 9355  ax-1ne0 9356  ax-1rid 9357  ax-rnegex 9358  ax-rrecex 9359  ax-cnre 9360  ax-pre-lttri 9361  ax-pre-lttrn 9362  ax-pre-ltadd 9363  ax-pre-mulgt0 9364
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rmo 2728  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-ot 3891  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-se 4685  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-isom 5432  df-riota 6057  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-of 6325  df-om 6482  df-1st 6582  df-2nd 6583  df-supp 6696  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-map 7221  df-en 7316  df-dom 7317  df-sdom 7318  df-fin 7319  df-fsupp 7626  df-oi 7729  df-card 8114  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-sub 9602  df-neg 9603  df-nn 10328  df-2 10385  df-n0 10585  df-z 10652  df-uz 10867  df-fz 11443  df-fzo 11554  df-seq 11812  df-hash 12109  df-ndx 14182  df-slot 14183  df-base 14184  df-sets 14185  df-plusg 14256  df-0g 14385  df-gsum 14386  df-mnd 15420  df-mhm 15469  df-grp 15550  df-minusg 15551  df-ghm 15750  df-cntz 15840  df-cmn 16284  df-abl 16285  df-mgp 16597  df-ur 16609  df-rng 16652  df-cring 16653  df-mamu 18286
This theorem is referenced by:  matassa  18336
  Copyright terms: Public domain W3C validator