MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamurid Structured version   Unicode version

Theorem mamurid 18423
Description: Diagonal matrices are right identities. (Contributed by Stefan O'Rear, 3-Sep-2015.) (Proof shortened by AV, 22-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b  |-  B  =  ( Base `  R
)
mamucl.r  |-  ( ph  ->  R  e.  Ring )
mamudiag.o  |-  .1.  =  ( 1r `  R )
mamudiag.z  |-  .0.  =  ( 0g `  R )
mamudiag.i  |-  I  =  ( i  e.  M ,  j  e.  M  |->  if ( i  =  j ,  .1.  ,  .0.  ) )
mamudiag.m  |-  ( ph  ->  M  e.  Fin )
mamulid.n  |-  ( ph  ->  N  e.  Fin )
mamurid.f  |-  F  =  ( R maMul  <. N ,  M ,  M >. )
mamurid.x  |-  ( ph  ->  X  e.  ( B  ^m  ( N  X.  M ) ) )
Assertion
Ref Expression
mamurid  |-  ( ph  ->  ( X F I )  =  X )
Distinct variable groups:    i, j, B    i, M, j    ph, i,
j    .1. , i, j    .0. , i, j
Allowed substitution hints:    R( i, j)    F( i, j)    I( i, j)    N( i, j)    X( i, j)

Proof of Theorem mamurid
Dummy variables  k  m  l are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamurid.f . . . . 5  |-  F  =  ( R maMul  <. N ,  M ,  M >. )
2 mamucl.b . . . . 5  |-  B  =  ( Base `  R
)
3 eqid 2451 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
4 mamucl.r . . . . . 6  |-  ( ph  ->  R  e.  Ring )
54adantr 465 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  ->  R  e.  Ring )
6 mamulid.n . . . . . 6  |-  ( ph  ->  N  e.  Fin )
76adantr 465 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  ->  N  e.  Fin )
8 mamudiag.m . . . . . 6  |-  ( ph  ->  M  e.  Fin )
98adantr 465 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  ->  M  e.  Fin )
10 mamurid.x . . . . . 6  |-  ( ph  ->  X  e.  ( B  ^m  ( N  X.  M ) ) )
1110adantr 465 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  ->  X  e.  ( B  ^m  ( N  X.  M
) ) )
12 mamudiag.o . . . . . . 7  |-  .1.  =  ( 1r `  R )
13 mamudiag.z . . . . . . 7  |-  .0.  =  ( 0g `  R )
14 mamudiag.i . . . . . . 7  |-  I  =  ( i  e.  M ,  j  e.  M  |->  if ( i  =  j ,  .1.  ,  .0.  ) )
152, 4, 12, 13, 14, 8mamudiagcl 18420 . . . . . 6  |-  ( ph  ->  I  e.  ( B  ^m  ( M  X.  M ) ) )
1615adantr 465 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  ->  I  e.  ( B  ^m  ( M  X.  M
) ) )
17 simprl 755 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
l  e.  N )
18 simprr 756 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  ->  m  e.  M )
191, 2, 3, 5, 7, 9, 9, 11, 16, 17, 18mamufv 18403 . . . 4  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( l ( X F I ) m )  =  ( R 
gsumg  ( k  e.  M  |->  ( ( l X k ) ( .r
`  R ) ( k I m ) ) ) ) )
20 rngmnd 16769 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
215, 20syl 16 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  ->  R  e.  Mnd )
224ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  R  e.  Ring )
23 elmapi 7337 . . . . . . . . . 10  |-  ( X  e.  ( B  ^m  ( N  X.  M
) )  ->  X : ( N  X.  M ) --> B )
2410, 23syl 16 . . . . . . . . 9  |-  ( ph  ->  X : ( N  X.  M ) --> B )
2524ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  X : ( N  X.  M ) --> B )
26 simplrl 759 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  l  e.  N )
27 simpr 461 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  k  e.  M )
2825, 26, 27fovrnd 6338 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  (
l X k )  e.  B )
29 elmapi 7337 . . . . . . . . . 10  |-  ( I  e.  ( B  ^m  ( M  X.  M
) )  ->  I : ( M  X.  M ) --> B )
3015, 29syl 16 . . . . . . . . 9  |-  ( ph  ->  I : ( M  X.  M ) --> B )
3130ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  I : ( M  X.  M ) --> B )
32 simplrr 760 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  m  e.  M )
3331, 27, 32fovrnd 6338 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  (
k I m )  e.  B )
342, 3rngcl 16773 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
l X k )  e.  B  /\  (
k I m )  e.  B )  -> 
( ( l X k ) ( .r
`  R ) ( k I m ) )  e.  B )
3522, 28, 33, 34syl3anc 1219 . . . . . 6  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  (
( l X k ) ( .r `  R ) ( k I m ) )  e.  B )
36 eqid 2451 . . . . . 6  |-  ( k  e.  M  |->  ( ( l X k ) ( .r `  R
) ( k I m ) ) )  =  ( k  e.  M  |->  ( ( l X k ) ( .r `  R ) ( k I m ) ) )
3735, 36fmptd 5969 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( k  e.  M  |->  ( ( l X k ) ( .r
`  R ) ( k I m ) ) ) : M --> B )
38 simp2 989 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M  /\  k  =/=  m
)  ->  k  e.  M )
39323adant3 1008 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M  /\  k  =/=  m
)  ->  m  e.  M )
402, 4, 12, 13, 14, 8dmatcomp 18421 . . . . . . . . . 10  |-  ( ( k  e.  M  /\  m  e.  M )  ->  ( k I m )  =  if ( k  =  m ,  .1.  ,  .0.  )
)
4138, 39, 40syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M  /\  k  =/=  m
)  ->  ( k
I m )  =  if ( k  =  m ,  .1.  ,  .0.  ) )
42 ifnefalse 3902 . . . . . . . . . 10  |-  ( k  =/=  m  ->  if ( k  =  m ,  .1.  ,  .0.  )  =  .0.  )
43423ad2ant3 1011 . . . . . . . . 9  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M  /\  k  =/=  m
)  ->  if (
k  =  m ,  .1.  ,  .0.  )  =  .0.  )
4441, 43eqtrd 2492 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M  /\  k  =/=  m
)  ->  ( k
I m )  =  .0.  )
4544oveq2d 6209 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M  /\  k  =/=  m
)  ->  ( (
l X k ) ( .r `  R
) ( k I m ) )  =  ( ( l X k ) ( .r
`  R )  .0.  ) )
462, 3, 13rngrz 16797 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
l X k )  e.  B )  -> 
( ( l X k ) ( .r
`  R )  .0.  )  =  .0.  )
4722, 28, 46syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M )  ->  (
( l X k ) ( .r `  R )  .0.  )  =  .0.  )
48473adant3 1008 . . . . . . 7  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M  /\  k  =/=  m
)  ->  ( (
l X k ) ( .r `  R
)  .0.  )  =  .0.  )
4945, 48eqtrd 2492 . . . . . 6  |-  ( ( ( ph  /\  (
l  e.  N  /\  m  e.  M )
)  /\  k  e.  M  /\  k  =/=  m
)  ->  ( (
l X k ) ( .r `  R
) ( k I m ) )  =  .0.  )
5049, 9suppsssn 6827 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( ( k  e.  M  |->  ( ( l X k ) ( .r `  R ) ( k I m ) ) ) supp  .0.  )  C_  { m }
)
512, 13, 21, 9, 18, 37, 50gsumpt 16568 . . . 4  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( R  gsumg  ( k  e.  M  |->  ( ( l X k ) ( .r
`  R ) ( k I m ) ) ) )  =  ( ( k  e.  M  |->  ( ( l X k ) ( .r `  R ) ( k I m ) ) ) `  m ) )
52 oveq2 6201 . . . . . . . 8  |-  ( k  =  m  ->  (
l X k )  =  ( l X m ) )
53 oveq1 6200 . . . . . . . 8  |-  ( k  =  m  ->  (
k I m )  =  ( m I m ) )
5452, 53oveq12d 6211 . . . . . . 7  |-  ( k  =  m  ->  (
( l X k ) ( .r `  R ) ( k I m ) )  =  ( ( l X m ) ( .r `  R ) ( m I m ) ) )
55 ovex 6218 . . . . . . 7  |-  ( ( l X m ) ( .r `  R
) ( m I m ) )  e. 
_V
5654, 36, 55fvmpt 5876 . . . . . 6  |-  ( m  e.  M  ->  (
( k  e.  M  |->  ( ( l X k ) ( .r
`  R ) ( k I m ) ) ) `  m
)  =  ( ( l X m ) ( .r `  R
) ( m I m ) ) )
5756ad2antll 728 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( ( k  e.  M  |->  ( ( l X k ) ( .r `  R ) ( k I m ) ) ) `  m )  =  ( ( l X m ) ( .r `  R ) ( m I m ) ) )
58 equequ1 1738 . . . . . . . . . 10  |-  ( i  =  m  ->  (
i  =  j  <->  m  =  j ) )
5958ifbid 3912 . . . . . . . . 9  |-  ( i  =  m  ->  if ( i  =  j ,  .1.  ,  .0.  )  =  if (
m  =  j ,  .1.  ,  .0.  )
)
60 equequ2 1739 . . . . . . . . . . 11  |-  ( j  =  m  ->  (
m  =  j  <->  m  =  m ) )
6160ifbid 3912 . . . . . . . . . 10  |-  ( j  =  m  ->  if ( m  =  j ,  .1.  ,  .0.  )  =  if ( m  =  m ,  .1.  ,  .0.  ) )
62 eqid 2451 . . . . . . . . . . 11  |-  m  =  m
6362iftruei 3899 . . . . . . . . . 10  |-  if ( m  =  m ,  .1.  ,  .0.  )  =  .1.
6461, 63syl6eq 2508 . . . . . . . . 9  |-  ( j  =  m  ->  if ( m  =  j ,  .1.  ,  .0.  )  =  .1.  )
65 fvex 5802 . . . . . . . . . 10  |-  ( 1r
`  R )  e. 
_V
6612, 65eqeltri 2535 . . . . . . . . 9  |-  .1.  e.  _V
6759, 64, 14, 66ovmpt2 6329 . . . . . . . 8  |-  ( ( m  e.  M  /\  m  e.  M )  ->  ( m I m )  =  .1.  )
6867anidms 645 . . . . . . 7  |-  ( m  e.  M  ->  (
m I m )  =  .1.  )
6968oveq2d 6209 . . . . . 6  |-  ( m  e.  M  ->  (
( l X m ) ( .r `  R ) ( m I m ) )  =  ( ( l X m ) ( .r `  R )  .1.  ) )
7069ad2antll 728 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( ( l X m ) ( .r
`  R ) ( m I m ) )  =  ( ( l X m ) ( .r `  R
)  .1.  ) )
7124fovrnda 6337 . . . . . 6  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( l X m )  e.  B )
722, 3, 12rngridm 16784 . . . . . 6  |-  ( ( R  e.  Ring  /\  (
l X m )  e.  B )  -> 
( ( l X m ) ( .r
`  R )  .1.  )  =  ( l X m ) )
735, 71, 72syl2anc 661 . . . . 5  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( ( l X m ) ( .r
`  R )  .1.  )  =  ( l X m ) )
7457, 70, 733eqtrd 2496 . . . 4  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( ( k  e.  M  |->  ( ( l X k ) ( .r `  R ) ( k I m ) ) ) `  m )  =  ( l X m ) )
7519, 51, 743eqtrd 2496 . . 3  |-  ( (
ph  /\  ( l  e.  N  /\  m  e.  M ) )  -> 
( l ( X F I ) m )  =  ( l X m ) )
7675ralrimivva 2907 . 2  |-  ( ph  ->  A. l  e.  N  A. m  e.  M  ( l ( X F I ) m )  =  ( l X m ) )
772, 4, 1, 6, 8, 8, 10, 15mamucl 18419 . . . . 5  |-  ( ph  ->  ( X F I )  e.  ( B  ^m  ( N  X.  M ) ) )
78 elmapi 7337 . . . . 5  |-  ( ( X F I )  e.  ( B  ^m  ( N  X.  M
) )  ->  ( X F I ) : ( N  X.  M
) --> B )
7977, 78syl 16 . . . 4  |-  ( ph  ->  ( X F I ) : ( N  X.  M ) --> B )
80 ffn 5660 . . . 4  |-  ( ( X F I ) : ( N  X.  M ) --> B  -> 
( X F I )  Fn  ( N  X.  M ) )
8179, 80syl 16 . . 3  |-  ( ph  ->  ( X F I )  Fn  ( N  X.  M ) )
82 ffn 5660 . . . 4  |-  ( X : ( N  X.  M ) --> B  ->  X  Fn  ( N  X.  M ) )
8324, 82syl 16 . . 3  |-  ( ph  ->  X  Fn  ( N  X.  M ) )
84 eqfnov2 6300 . . 3  |-  ( ( ( X F I )  Fn  ( N  X.  M )  /\  X  Fn  ( N  X.  M ) )  -> 
( ( X F I )  =  X  <->  A. l  e.  N  A. m  e.  M  ( l ( X F I ) m )  =  ( l X m ) ) )
8581, 83, 84syl2anc 661 . 2  |-  ( ph  ->  ( ( X F I )  =  X  <->  A. l  e.  N  A. m  e.  M  ( l ( X F I ) m )  =  ( l X m ) ) )
8676, 85mpbird 232 1  |-  ( ph  ->  ( X F I )  =  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   _Vcvv 3071   ifcif 3892   <.cotp 3986    |-> cmpt 4451    X. cxp 4939    Fn wfn 5514   -->wf 5515   ` cfv 5519  (class class class)co 6193    |-> cmpt2 6195    ^m cmap 7317   Fincfn 7413   Basecbs 14285   .rcmulr 14350   0gc0g 14489    gsumg cgsu 14490   Mndcmnd 15520   1rcur 16717   Ringcrg 16760   maMul cmmul 18397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-inf2 7951  ax-cnex 9442  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-ot 3987  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-se 4781  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-isom 5528  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-supp 6794  df-recs 6935  df-rdg 6969  df-1o 7023  df-oadd 7027  df-er 7204  df-map 7319  df-en 7414  df-dom 7415  df-sdom 7416  df-fin 7417  df-fsupp 7725  df-oi 7828  df-card 8213  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-nn 10427  df-2 10484  df-n0 10684  df-z 10751  df-uz 10966  df-fz 11548  df-fzo 11659  df-seq 11917  df-hash 12214  df-ndx 14288  df-slot 14289  df-base 14290  df-sets 14291  df-ress 14292  df-plusg 14362  df-0g 14491  df-gsum 14492  df-mre 14635  df-mrc 14636  df-acs 14638  df-mnd 15526  df-submnd 15576  df-grp 15656  df-minusg 15657  df-mulg 15659  df-cntz 15946  df-cmn 16392  df-abl 16393  df-mgp 16706  df-ur 16718  df-rng 16762  df-mamu 18399
This theorem is referenced by:  matrng  18449  mat1  18454
  Copyright terms: Public domain W3C validator