MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamucl Structured version   Unicode version

Theorem mamucl 19410
Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b  |-  B  =  ( Base `  R
)
mamucl.r  |-  ( ph  ->  R  e.  Ring )
mamucl.f  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
mamucl.m  |-  ( ph  ->  M  e.  Fin )
mamucl.n  |-  ( ph  ->  N  e.  Fin )
mamucl.p  |-  ( ph  ->  P  e.  Fin )
mamucl.x  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
mamucl.y  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
Assertion
Ref Expression
mamucl  |-  ( ph  ->  ( X F Y )  e.  ( B  ^m  ( M  X.  P ) ) )

Proof of Theorem mamucl
Dummy variables  i 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.f . . 3  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
2 mamucl.b . . 3  |-  B  =  ( Base `  R
)
3 eqid 2422 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
4 mamucl.r . . 3  |-  ( ph  ->  R  e.  Ring )
5 mamucl.m . . 3  |-  ( ph  ->  M  e.  Fin )
6 mamucl.n . . 3  |-  ( ph  ->  N  e.  Fin )
7 mamucl.p . . 3  |-  ( ph  ->  P  e.  Fin )
8 mamucl.x . . 3  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
9 mamucl.y . . 3  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9mamuval 19395 . 2  |-  ( ph  ->  ( X F Y )  =  ( i  e.  M ,  k  e.  P  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) ) )
11 ringcmn 17796 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
124, 11syl 17 . . . . . 6  |-  ( ph  ->  R  e. CMnd )
1312adantr 466 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  R  e. CMnd )
146adantr 466 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  N  e.  Fin )
154ad2antrr 730 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  R  e.  Ring )
16 elmapi 7497 . . . . . . . . . 10  |-  ( X  e.  ( B  ^m  ( M  X.  N
) )  ->  X : ( M  X.  N ) --> B )
178, 16syl 17 . . . . . . . . 9  |-  ( ph  ->  X : ( M  X.  N ) --> B )
1817ad2antrr 730 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  X : ( M  X.  N ) --> B )
19 simplrl 768 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  i  e.  M )
20 simpr 462 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  j  e.  N )
2118, 19, 20fovrnd 6451 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  (
i X j )  e.  B )
22 elmapi 7497 . . . . . . . . . 10  |-  ( Y  e.  ( B  ^m  ( N  X.  P
) )  ->  Y : ( N  X.  P ) --> B )
239, 22syl 17 . . . . . . . . 9  |-  ( ph  ->  Y : ( N  X.  P ) --> B )
2423ad2antrr 730 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  Y : ( N  X.  P ) --> B )
25 simplrr 769 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  k  e.  P )
2624, 20, 25fovrnd 6451 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  (
j Y k )  e.  B )
272, 3ringcl 17779 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
i X j )  e.  B  /\  (
j Y k )  e.  B )  -> 
( ( i X j ) ( .r
`  R ) ( j Y k ) )  e.  B )
2815, 21, 26, 27syl3anc 1264 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  (
( i X j ) ( .r `  R ) ( j Y k ) )  e.  B )
2928ralrimiva 2839 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  A. j  e.  N  ( ( i X j ) ( .r
`  R ) ( j Y k ) )  e.  B )
302, 13, 14, 29gsummptcl 17584 . . . 4  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) )  e.  B )
3130ralrimivva 2846 . . 3  |-  ( ph  ->  A. i  e.  M  A. k  e.  P  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) )  e.  B )
32 fvex 5887 . . . . . 6  |-  ( Base `  R )  e.  _V
332, 32eqeltri 2506 . . . . 5  |-  B  e. 
_V
34 xpfi 7844 . . . . . 6  |-  ( ( M  e.  Fin  /\  P  e.  Fin )  ->  ( M  X.  P
)  e.  Fin )
355, 7, 34syl2anc 665 . . . . 5  |-  ( ph  ->  ( M  X.  P
)  e.  Fin )
36 elmapg 7489 . . . . 5  |-  ( ( B  e.  _V  /\  ( M  X.  P
)  e.  Fin )  ->  ( ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) )  e.  ( B  ^m  ( M  X.  P ) )  <-> 
( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) ) : ( M  X.  P ) --> B ) )
3733, 35, 36sylancr 667 . . . 4  |-  ( ph  ->  ( ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) )  e.  ( B  ^m  ( M  X.  P ) )  <-> 
( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) ) : ( M  X.  P ) --> B ) )
38 eqid 2422 . . . . 5  |-  ( i  e.  M ,  k  e.  P  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) )  =  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) )
3938fmpt2 6870 . . . 4  |-  ( A. i  e.  M  A. k  e.  P  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) )  e.  B  <->  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) ) : ( M  X.  P ) --> B )
4037, 39syl6rbbr 267 . . 3  |-  ( ph  ->  ( A. i  e.  M  A. k  e.  P  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) )  e.  B  <->  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) )  e.  ( B  ^m  ( M  X.  P ) ) ) )
4131, 40mpbid 213 . 2  |-  ( ph  ->  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) )  e.  ( B  ^m  ( M  X.  P
) ) )
4210, 41eqeltrd 2510 1  |-  ( ph  ->  ( X F Y )  e.  ( B  ^m  ( M  X.  P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775   _Vcvv 3081   <.cotp 4004    |-> cmpt 4479    X. cxp 4847   -->wf 5593   ` cfv 5597  (class class class)co 6301    |-> cmpt2 6303    ^m cmap 7476   Fincfn 7573   Basecbs 15106   .rcmulr 15176    gsumg cgsu 15324  CMndccmn 17415   Ringcrg 17765   maMul cmmul 19392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-ot 4005  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-oi 8027  df-card 8374  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-fzo 11916  df-seq 12213  df-hash 12515  df-ndx 15109  df-slot 15110  df-base 15111  df-sets 15112  df-plusg 15188  df-0g 15325  df-gsum 15326  df-mgm 16473  df-sgrp 16512  df-mnd 16522  df-grp 16658  df-minusg 16659  df-cntz 16956  df-cmn 17417  df-abl 17418  df-mgp 17709  df-ur 17721  df-ring 17767  df-mamu 19393
This theorem is referenced by:  mamuass  19411  mamudi  19412  mamudir  19413  mamuvs1  19414  mamuvs2  19415  mamulid  19450  mamurid  19451  matring  19452  matassa  19453  mavmulass  19558
  Copyright terms: Public domain W3C validator