MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamucl Structured version   Unicode version

Theorem mamucl 19070
Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b  |-  B  =  ( Base `  R
)
mamucl.r  |-  ( ph  ->  R  e.  Ring )
mamucl.f  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
mamucl.m  |-  ( ph  ->  M  e.  Fin )
mamucl.n  |-  ( ph  ->  N  e.  Fin )
mamucl.p  |-  ( ph  ->  P  e.  Fin )
mamucl.x  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
mamucl.y  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
Assertion
Ref Expression
mamucl  |-  ( ph  ->  ( X F Y )  e.  ( B  ^m  ( M  X.  P ) ) )

Proof of Theorem mamucl
Dummy variables  i 
j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.f . . 3  |-  F  =  ( R maMul  <. M ,  N ,  P >. )
2 mamucl.b . . 3  |-  B  =  ( Base `  R
)
3 eqid 2454 . . 3  |-  ( .r
`  R )  =  ( .r `  R
)
4 mamucl.r . . 3  |-  ( ph  ->  R  e.  Ring )
5 mamucl.m . . 3  |-  ( ph  ->  M  e.  Fin )
6 mamucl.n . . 3  |-  ( ph  ->  N  e.  Fin )
7 mamucl.p . . 3  |-  ( ph  ->  P  e.  Fin )
8 mamucl.x . . 3  |-  ( ph  ->  X  e.  ( B  ^m  ( M  X.  N ) ) )
9 mamucl.y . . 3  |-  ( ph  ->  Y  e.  ( B  ^m  ( N  X.  P ) ) )
101, 2, 3, 4, 5, 6, 7, 8, 9mamuval 19055 . 2  |-  ( ph  ->  ( X F Y )  =  ( i  e.  M ,  k  e.  P  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) ) )
11 ringcmn 17424 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. CMnd
)
124, 11syl 16 . . . . . 6  |-  ( ph  ->  R  e. CMnd )
1312adantr 463 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  R  e. CMnd )
146adantr 463 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  N  e.  Fin )
154ad2antrr 723 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  R  e.  Ring )
16 elmapi 7433 . . . . . . . . . 10  |-  ( X  e.  ( B  ^m  ( M  X.  N
) )  ->  X : ( M  X.  N ) --> B )
178, 16syl 16 . . . . . . . . 9  |-  ( ph  ->  X : ( M  X.  N ) --> B )
1817ad2antrr 723 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  X : ( M  X.  N ) --> B )
19 simplrl 759 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  i  e.  M )
20 simpr 459 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  j  e.  N )
2118, 19, 20fovrnd 6420 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  (
i X j )  e.  B )
22 elmapi 7433 . . . . . . . . . 10  |-  ( Y  e.  ( B  ^m  ( N  X.  P
) )  ->  Y : ( N  X.  P ) --> B )
239, 22syl 16 . . . . . . . . 9  |-  ( ph  ->  Y : ( N  X.  P ) --> B )
2423ad2antrr 723 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  Y : ( N  X.  P ) --> B )
25 simplrr 760 . . . . . . . 8  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  k  e.  P )
2624, 20, 25fovrnd 6420 . . . . . . 7  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  (
j Y k )  e.  B )
272, 3ringcl 17407 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (
i X j )  e.  B  /\  (
j Y k )  e.  B )  -> 
( ( i X j ) ( .r
`  R ) ( j Y k ) )  e.  B )
2815, 21, 26, 27syl3anc 1226 . . . . . 6  |-  ( ( ( ph  /\  (
i  e.  M  /\  k  e.  P )
)  /\  j  e.  N )  ->  (
( i X j ) ( .r `  R ) ( j Y k ) )  e.  B )
2928ralrimiva 2868 . . . . 5  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  ->  A. j  e.  N  ( ( i X j ) ( .r
`  R ) ( j Y k ) )  e.  B )
302, 13, 14, 29gsummptcl 17190 . . . 4  |-  ( (
ph  /\  ( i  e.  M  /\  k  e.  P ) )  -> 
( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) )  e.  B )
3130ralrimivva 2875 . . 3  |-  ( ph  ->  A. i  e.  M  A. k  e.  P  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) )  e.  B )
32 fvex 5858 . . . . . 6  |-  ( Base `  R )  e.  _V
332, 32eqeltri 2538 . . . . 5  |-  B  e. 
_V
34 xpfi 7783 . . . . . 6  |-  ( ( M  e.  Fin  /\  P  e.  Fin )  ->  ( M  X.  P
)  e.  Fin )
355, 7, 34syl2anc 659 . . . . 5  |-  ( ph  ->  ( M  X.  P
)  e.  Fin )
36 elmapg 7425 . . . . 5  |-  ( ( B  e.  _V  /\  ( M  X.  P
)  e.  Fin )  ->  ( ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) )  e.  ( B  ^m  ( M  X.  P ) )  <-> 
( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) ) : ( M  X.  P ) --> B ) )
3733, 35, 36sylancr 661 . . . 4  |-  ( ph  ->  ( ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) )  e.  ( B  ^m  ( M  X.  P ) )  <-> 
( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) ) : ( M  X.  P ) --> B ) )
38 eqid 2454 . . . . 5  |-  ( i  e.  M ,  k  e.  P  |->  ( R 
gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) )  =  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) )
3938fmpt2 6840 . . . 4  |-  ( A. i  e.  M  A. k  e.  P  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) )  e.  B  <->  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) ) : ( M  X.  P ) --> B )
4037, 39syl6rbbr 264 . . 3  |-  ( ph  ->  ( A. i  e.  M  A. k  e.  P  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) )  e.  B  <->  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r `  R
) ( j Y k ) ) ) ) )  e.  ( B  ^m  ( M  X.  P ) ) ) )
4131, 40mpbid 210 . 2  |-  ( ph  ->  ( i  e.  M ,  k  e.  P  |->  ( R  gsumg  ( j  e.  N  |->  ( ( i X j ) ( .r
`  R ) ( j Y k ) ) ) ) )  e.  ( B  ^m  ( M  X.  P
) ) )
4210, 41eqeltrd 2542 1  |-  ( ph  ->  ( X F Y )  e.  ( B  ^m  ( M  X.  P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   A.wral 2804   _Vcvv 3106   <.cotp 4024    |-> cmpt 4497    X. cxp 4986   -->wf 5566   ` cfv 5570  (class class class)co 6270    |-> cmpt2 6272    ^m cmap 7412   Fincfn 7509   Basecbs 14716   .rcmulr 14785    gsumg cgsu 14930  CMndccmn 16997   Ringcrg 17393   maMul cmmul 19052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-ot 4025  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12090  df-hash 12388  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-plusg 14797  df-0g 14931  df-gsum 14932  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-grp 16256  df-minusg 16257  df-cntz 16554  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-mamu 19053
This theorem is referenced by:  mamuass  19071  mamudi  19072  mamudir  19073  mamuvs1  19074  mamuvs2  19075  mamulid  19110  mamurid  19111  matring  19112  matassa  19113  mavmulass  19218
  Copyright terms: Public domain W3C validator