MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  madugsum Structured version   Unicode version

Theorem madugsum 18912
Description: The determinant of a matrix with a row  L consisting of the same element  X is the sum of the elements of the  L-th column of the adjunct of the matrix multiplied with  X. (Contributed by Stefan O'Rear, 16-Jul-2018.)
Hypotheses
Ref Expression
maduf.a  |-  A  =  ( N Mat  R )
maduf.j  |-  J  =  ( N maAdju  R )
maduf.b  |-  B  =  ( Base `  A
)
madugsum.d  |-  D  =  ( N maDet  R )
madugsum.t  |-  .x.  =  ( .r `  R )
madugsum.k  |-  K  =  ( Base `  R
)
madugsum.m  |-  ( ph  ->  M  e.  B )
madugsum.r  |-  ( ph  ->  R  e.  CRing )
madugsum.x  |-  ( (
ph  /\  i  e.  N )  ->  X  e.  K )
madugsum.l  |-  ( ph  ->  L  e.  N )
Assertion
Ref Expression
madugsum  |-  ( ph  ->  ( R  gsumg  ( i  e.  N  |->  ( X  .x.  (
i ( J `  M ) L ) ) ) )  =  ( D `  (
j  e.  N , 
i  e.  N  |->  if ( j  =  L ,  X ,  ( j M i ) ) ) ) )
Distinct variable groups:    i, N, j    R, i, j    B, i, j    ph, i, j   
i, J    i, K, j    i, M, j    j, X    .x. , i    i, L, j
Allowed substitution hints:    A( i, j)    D( i, j)    .x. ( j)    J( j)    X( i)

Proof of Theorem madugsum
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mpteq1 4527 . . . . 5  |-  ( c  =  (/)  ->  ( b  e.  c  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) )  =  ( b  e.  (/)  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) ) ) )
21oveq2d 6298 . . . 4  |-  ( c  =  (/)  ->  ( R 
gsumg  ( b  e.  c 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( R  gsumg  ( b  e.  (/)  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) ) ) ) )
3 eleq2 2540 . . . . . . . 8  |-  ( c  =  (/)  ->  ( b  e.  c  <->  b  e.  (/) ) )
43ifbid 3961 . . . . . . 7  |-  ( c  =  (/)  ->  if ( b  e.  c , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) )  =  if ( b  e.  (/) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) )
54ifeq1d 3957 . . . . . 6  |-  ( c  =  (/)  ->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) )  =  if ( a  =  L ,  if ( b  e.  (/) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) )
65mpt2eq3dv 6345 . . . . 5  |-  ( c  =  (/)  ->  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  (/) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) )
76fveq2d 5868 . . . 4  |-  ( c  =  (/)  ->  ( D `
 ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  (/) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) )
82, 7eqeq12d 2489 . . 3  |-  ( c  =  (/)  ->  ( ( R  gsumg  ( b  e.  c 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  <-> 
( R  gsumg  ( b  e.  (/)  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  (/) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) ) )
9 mpteq1 4527 . . . . 5  |-  ( c  =  d  ->  (
b  e.  c  |->  (
[_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) ) )  =  ( b  e.  d  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )
109oveq2d 6298 . . . 4  |-  ( c  =  d  ->  ( R  gsumg  ( b  e.  c 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( R  gsumg  ( b  e.  d 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) ) )
11 eleq2 2540 . . . . . . . 8  |-  ( c  =  d  ->  (
b  e.  c  <->  b  e.  d ) )
1211ifbid 3961 . . . . . . 7  |-  ( c  =  d  ->  if ( b  e.  c ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) )  =  if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) )
1312ifeq1d 3957 . . . . . 6  |-  ( c  =  d  ->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) )  =  if ( a  =  L ,  if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) )
1413mpt2eq3dv 6345 . . . . 5  |-  ( c  =  d  ->  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) )
1514fveq2d 5868 . . . 4  |-  ( c  =  d  ->  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) )
1610, 15eqeq12d 2489 . . 3  |-  ( c  =  d  ->  (
( R  gsumg  ( b  e.  c 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  <-> 
( R  gsumg  ( b  e.  d 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ) )
17 mpteq1 4527 . . . . 5  |-  ( c  =  ( d  u. 
{ e } )  ->  ( b  e.  c  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) )  =  ( b  e.  ( d  u.  { e } )  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )
1817oveq2d 6298 . . . 4  |-  ( c  =  ( d  u. 
{ e } )  ->  ( R  gsumg  ( b  e.  c  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( R  gsumg  ( b  e.  ( d  u. 
{ e } ) 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) ) )
19 eleq2 2540 . . . . . . . 8  |-  ( c  =  ( d  u. 
{ e } )  ->  ( b  e.  c  <->  b  e.  ( d  u.  { e } ) ) )
2019ifbid 3961 . . . . . . 7  |-  ( c  =  ( d  u. 
{ e } )  ->  if ( b  e.  c ,  [_ b  /  i ]_ X ,  ( 0g `  R ) )  =  if ( b  e.  ( d  u.  {
e } ) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) )
2120ifeq1d 3957 . . . . . 6  |-  ( c  =  ( d  u. 
{ e } )  ->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) )  =  if ( a  =  L ,  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) )
2221mpt2eq3dv 6345 . . . . 5  |-  ( c  =  ( d  u. 
{ e } )  ->  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )
2322fveq2d 5868 . . . 4  |-  ( c  =  ( d  u. 
{ e } )  ->  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) )  =  ( D `
 ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) )
2418, 23eqeq12d 2489 . . 3  |-  ( c  =  ( d  u. 
{ e } )  ->  ( ( R 
gsumg  ( b  e.  c 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  <-> 
( R  gsumg  ( b  e.  ( d  u.  { e } )  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ) )
25 mpteq1 4527 . . . . 5  |-  ( c  =  N  ->  (
b  e.  c  |->  (
[_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) ) )  =  ( b  e.  N  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )
2625oveq2d 6298 . . . 4  |-  ( c  =  N  ->  ( R  gsumg  ( b  e.  c 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( R  gsumg  ( b  e.  N  |->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) ) )
27 eleq2 2540 . . . . . . . 8  |-  ( c  =  N  ->  (
b  e.  c  <->  b  e.  N ) )
2827ifbid 3961 . . . . . . 7  |-  ( c  =  N  ->  if ( b  e.  c ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) )  =  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g
`  R ) ) )
2928ifeq1d 3957 . . . . . 6  |-  ( c  =  N  ->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) )  =  if ( a  =  L ,  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) )
3029mpt2eq3dv 6345 . . . . 5  |-  ( c  =  N  ->  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) )
3130fveq2d 5868 . . . 4  |-  ( c  =  N  ->  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) )
3226, 31eqeq12d 2489 . . 3  |-  ( c  =  N  ->  (
( R  gsumg  ( b  e.  c 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  c ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  <-> 
( R  gsumg  ( b  e.  N  |->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ) )
33 noel 3789 . . . . . . . . 9  |-  -.  b  e.  (/)
34 iffalse 3948 . . . . . . . . 9  |-  ( -.  b  e.  (/)  ->  if ( b  e.  (/) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) )  =  ( 0g `  R ) )
3533, 34mp1i 12 . . . . . . . 8  |-  ( ( a  e.  N  /\  b  e.  N )  ->  if ( b  e.  (/) ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) )  =  ( 0g
`  R ) )
3635ifeq1d 3957 . . . . . . 7  |-  ( ( a  e.  N  /\  b  e.  N )  ->  if ( a  =  L ,  if ( b  e.  (/) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) )  =  if ( a  =  L ,  ( 0g `  R ) ,  ( a M b ) ) )
3736mpt2eq3ia 6344 . . . . . 6  |-  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  (/) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  ( 0g `  R ) ,  ( a M b ) ) )
3837fveq2i 5867 . . . . 5  |-  ( D `
 ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  (/) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) )  =  ( D `
 ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  ( 0g `  R ) ,  ( a M b ) ) ) )
39 madugsum.d . . . . . 6  |-  D  =  ( N maDet  R )
40 madugsum.k . . . . . 6  |-  K  =  ( Base `  R
)
41 eqid 2467 . . . . . 6  |-  ( 0g
`  R )  =  ( 0g `  R
)
42 madugsum.r . . . . . 6  |-  ( ph  ->  R  e.  CRing )
43 madugsum.m . . . . . . . 8  |-  ( ph  ->  M  e.  B )
44 maduf.a . . . . . . . . 9  |-  A  =  ( N Mat  R )
45 maduf.b . . . . . . . . 9  |-  B  =  ( Base `  A
)
4644, 45matrcl 18681 . . . . . . . 8  |-  ( M  e.  B  ->  ( N  e.  Fin  /\  R  e.  _V ) )
4743, 46syl 16 . . . . . . 7  |-  ( ph  ->  ( N  e.  Fin  /\  R  e.  _V )
)
4847simpld 459 . . . . . 6  |-  ( ph  ->  N  e.  Fin )
4944, 40, 45matbas2i 18691 . . . . . . . . 9  |-  ( M  e.  B  ->  M  e.  ( K  ^m  ( N  X.  N ) ) )
50 elmapi 7437 . . . . . . . . 9  |-  ( M  e.  ( K  ^m  ( N  X.  N
) )  ->  M : ( N  X.  N ) --> K )
5143, 49, 503syl 20 . . . . . . . 8  |-  ( ph  ->  M : ( N  X.  N ) --> K )
5251fovrnda 6428 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  N  /\  b  e.  N ) )  -> 
( a M b )  e.  K )
53523impb 1192 . . . . . 6  |-  ( (
ph  /\  a  e.  N  /\  b  e.  N
)  ->  ( a M b )  e.  K )
54 madugsum.l . . . . . 6  |-  ( ph  ->  L  e.  N )
5539, 40, 41, 42, 48, 53, 54mdetr0 18874 . . . . 5  |-  ( ph  ->  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  ( 0g `  R ) ,  ( a M b ) ) ) )  =  ( 0g `  R
) )
5638, 55syl5eq 2520 . . . 4  |-  ( ph  ->  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  (/) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  =  ( 0g `  R ) )
57 mpt0 5706 . . . . . 6  |-  ( b  e.  (/)  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) )  =  (/)
5857oveq2i 6293 . . . . 5  |-  ( R 
gsumg  ( b  e.  (/)  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) ) ) )  =  ( R  gsumg  (/) )
5941gsum0 15823 . . . . 5  |-  ( R 
gsumg  (/) )  =  ( 0g
`  R )
6058, 59eqtri 2496 . . . 4  |-  ( R 
gsumg  ( b  e.  (/)  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) ) ) )  =  ( 0g `  R )
6156, 60syl6reqr 2527 . . 3  |-  ( ph  ->  ( R  gsumg  ( b  e.  (/)  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  (/) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) )
62 eqid 2467 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
6342adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  R  e.  CRing )
64 crngrng 16996 . . . . . . . . 9  |-  ( R  e.  CRing  ->  R  e.  Ring )
6563, 64syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  R  e.  Ring )
66 rngcmn 17016 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. CMnd
)
6765, 66syl 16 . . . . . . 7  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  R  e. CMnd )
6848adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  N  e.  Fin )
69 simprl 755 . . . . . . . 8  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
d  C_  N )
70 ssfi 7737 . . . . . . . 8  |-  ( ( N  e.  Fin  /\  d  C_  N )  -> 
d  e.  Fin )
7168, 69, 70syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
d  e.  Fin )
7265adantr 465 . . . . . . . 8  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  b  e.  d )  ->  R  e.  Ring )
7369sselda 3504 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  b  e.  d )  ->  b  e.  N )
74 madugsum.x . . . . . . . . . . 11  |-  ( (
ph  /\  i  e.  N )  ->  X  e.  K )
7574ralrimiva 2878 . . . . . . . . . 10  |-  ( ph  ->  A. i  e.  N  X  e.  K )
7675ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  b  e.  d )  ->  A. i  e.  N  X  e.  K )
77 rspcsbela 3853 . . . . . . . . 9  |-  ( ( b  e.  N  /\  A. i  e.  N  X  e.  K )  ->  [_ b  /  i ]_ X  e.  K )
7873, 76, 77syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  b  e.  d )  ->  [_ b  / 
i ]_ X  e.  K
)
79 maduf.j . . . . . . . . . . . . . 14  |-  J  =  ( N maAdju  R )
8044, 79, 45maduf 18910 . . . . . . . . . . . . 13  |-  ( R  e.  CRing  ->  J : B
--> B )
8142, 80syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  J : B --> B )
8281, 43ffvelrnd 6020 . . . . . . . . . . 11  |-  ( ph  ->  ( J `  M
)  e.  B )
8344, 40, 45matbas2i 18691 . . . . . . . . . . 11  |-  ( ( J `  M )  e.  B  ->  ( J `  M )  e.  ( K  ^m  ( N  X.  N ) ) )
84 elmapi 7437 . . . . . . . . . . 11  |-  ( ( J `  M )  e.  ( K  ^m  ( N  X.  N
) )  ->  ( J `  M ) : ( N  X.  N ) --> K )
8582, 83, 843syl 20 . . . . . . . . . 10  |-  ( ph  ->  ( J `  M
) : ( N  X.  N ) --> K )
8685ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  b  e.  d )  ->  ( J `  M ) : ( N  X.  N ) --> K )
8754ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  b  e.  d )  ->  L  e.  N )
8886, 73, 87fovrnd 6429 . . . . . . . 8  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  b  e.  d )  ->  ( b
( J `  M
) L )  e.  K )
89 madugsum.t . . . . . . . . 9  |-  .x.  =  ( .r `  R )
9040, 89rngcl 16999 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  [_ b  /  i ]_ X  e.  K  /\  (
b ( J `  M ) L )  e.  K )  -> 
( [_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) )  e.  K )
9172, 78, 88, 90syl3anc 1228 . . . . . . 7  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  b  e.  d )  ->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) )  e.  K
)
92 vex 3116 . . . . . . . 8  |-  e  e. 
_V
9392a1i 11 . . . . . . 7  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
e  e.  _V )
94 eldifn 3627 . . . . . . . 8  |-  ( e  e.  ( N  \ 
d )  ->  -.  e  e.  d )
9594ad2antll 728 . . . . . . 7  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  -.  e  e.  d
)
96 eldifi 3626 . . . . . . . . . 10  |-  ( e  e.  ( N  \ 
d )  ->  e  e.  N )
9796ad2antll 728 . . . . . . . . 9  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
e  e.  N )
9875adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  A. i  e.  N  X  e.  K )
99 rspcsbela 3853 . . . . . . . . 9  |-  ( ( e  e.  N  /\  A. i  e.  N  X  e.  K )  ->  [_ e  /  i ]_ X  e.  K )
10097, 98, 99syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  [_ e  /  i ]_ X  e.  K
)
10185adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( J `  M
) : ( N  X.  N ) --> K )
10254adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  L  e.  N )
103101, 97, 102fovrnd 6429 . . . . . . . 8  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( e ( J `
 M ) L )  e.  K )
10440, 89rngcl 16999 . . . . . . . 8  |-  ( ( R  e.  Ring  /\  [_ e  /  i ]_ X  e.  K  /\  (
e ( J `  M ) L )  e.  K )  -> 
( [_ e  /  i ]_ X  .x.  ( e ( J `  M
) L ) )  e.  K )
10565, 100, 103, 104syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( [_ e  /  i ]_ X  .x.  ( e ( J `  M
) L ) )  e.  K )
106 csbeq1 3438 . . . . . . . 8  |-  ( b  =  e  ->  [_ b  /  i ]_ X  =  [_ e  /  i ]_ X )
107 oveq1 6289 . . . . . . . 8  |-  ( b  =  e  ->  (
b ( J `  M ) L )  =  ( e ( J `  M ) L ) )
108106, 107oveq12d 6300 . . . . . . 7  |-  ( b  =  e  ->  ( [_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) )  =  ( [_ e  /  i ]_ X  .x.  ( e ( J `
 M ) L ) ) )
10940, 62, 67, 71, 91, 93, 95, 105, 108gsumunsn 16777 . . . . . 6  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( R  gsumg  ( b  e.  ( d  u.  { e } )  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( ( R 
gsumg  ( b  e.  d 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) ) ( +g  `  R ) ( [_ e  / 
i ]_ X  .x.  (
e ( J `  M ) L ) ) ) )
110109adantr 465 . . . . 5  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  ( R  gsumg  ( b  e.  d  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) )  ->  ( R  gsumg  ( b  e.  ( d  u.  { e } )  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( ( R 
gsumg  ( b  e.  d 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) ) ( +g  `  R ) ( [_ e  / 
i ]_ X  .x.  (
e ( J `  M ) L ) ) ) )
111 oveq1 6289 . . . . . 6  |-  ( ( R  gsumg  ( b  e.  d 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  ->  ( ( R 
gsumg  ( b  e.  d 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) ) ( +g  `  R ) ( [_ e  / 
i ]_ X  .x.  (
e ( J `  M ) L ) ) )  =  ( ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ( +g  `  R
) ( [_ e  /  i ]_ X  .x.  ( e ( J `
 M ) L ) ) ) )
112111adantl 466 . . . . 5  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  ( R  gsumg  ( b  e.  d  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) )  ->  (
( R  gsumg  ( b  e.  d 
|->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) ) ( +g  `  R ) ( [_ e  / 
i ]_ X  .x.  (
e ( J `  M ) L ) ) )  =  ( ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ( +g  `  R
) ( [_ e  /  i ]_ X  .x.  ( e ( J `
 M ) L ) ) ) )
113 elun 3645 . . . . . . . . . . . . . 14  |-  ( b  e.  ( d  u. 
{ e } )  <-> 
( b  e.  d  \/  b  e.  {
e } ) )
114 elsn 4041 . . . . . . . . . . . . . . 15  |-  ( b  e.  { e }  <-> 
b  =  e )
115114orbi2i 519 . . . . . . . . . . . . . 14  |-  ( ( b  e.  d  \/  b  e.  { e } )  <->  ( b  e.  d  \/  b  =  e ) )
116113, 115bitri 249 . . . . . . . . . . . . 13  |-  ( b  e.  ( d  u. 
{ e } )  <-> 
( b  e.  d  \/  b  =  e ) )
117 ifbi 3960 . . . . . . . . . . . . 13  |-  ( ( b  e.  ( d  u.  { e } )  <->  ( b  e.  d  \/  b  =  e ) )  ->  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) )  =  if ( ( b  e.  d  \/  b  =  e ) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) )
118116, 117ax-mp 5 . . . . . . . . . . . 12  |-  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) )  =  if ( ( b  e.  d  \/  b  =  e ) , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) )
119 rngmnd 16995 . . . . . . . . . . . . . . 15  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
12065, 119syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  R  e.  Mnd )
1211203ad2ant1 1017 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  R  e.  Mnd )
122 simp3 998 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  b  e.  N )
123983ad2ant1 1017 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  A. i  e.  N  X  e.  K )
124122, 123, 77syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  [_ b  / 
i ]_ X  e.  K
)
125 elequ1 1770 . . . . . . . . . . . . . . . 16  |-  ( b  =  e  ->  (
b  e.  d  <->  e  e.  d ) )
126125biimpac 486 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  d  /\  b  =  e )  ->  e  e.  d )
12795, 126nsyl 121 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  -.  ( b  e.  d  /\  b  =  e ) )
1281273ad2ant1 1017 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  -.  (
b  e.  d  /\  b  =  e )
)
12940, 41, 62mndifsplit 18905 . . . . . . . . . . . . 13  |-  ( ( R  e.  Mnd  /\  [_ b  /  i ]_ X  e.  K  /\  -.  ( b  e.  d  /\  b  =  e ) )  ->  if ( ( b  e.  d  \/  b  =  e ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) )  =  ( if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ( +g  `  R ) if ( b  =  e ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ) )
130121, 124, 128, 129syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  if (
( b  e.  d  \/  b  =  e ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) )  =  ( if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ( +g  `  R ) if ( b  =  e ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ) )
131118, 130syl5eq 2520 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  if (
b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) )  =  ( if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ( +g  `  R ) if ( b  =  e ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ) )
132106adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  b  =  e )  ->  [_ b  / 
i ]_ X  =  [_ e  /  i ]_ X
)
133132ifeq1da 3969 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  if ( b  =  e ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) )  =  if ( b  =  e , 
[_ e  /  i ]_ X ,  ( 0g
`  R ) ) )
134 oveq2 6290 . . . . . . . . . . . . . . . 16  |-  ( if ( b  =  e ,  ( 1r `  R ) ,  ( 0g `  R ) )  =  ( 1r
`  R )  -> 
( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )  =  ( [_ e  /  i ]_ X  .x.  ( 1r `  R
) ) )
135 oveq2 6290 . . . . . . . . . . . . . . . 16  |-  ( if ( b  =  e ,  ( 1r `  R ) ,  ( 0g `  R ) )  =  ( 0g
`  R )  -> 
( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )  =  ( [_ e  /  i ]_ X  .x.  ( 0g `  R
) ) )
136134, 135ifsb 3952 . . . . . . . . . . . . . . 15  |-  ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) )  =  if ( b  =  e ,  ( [_ e  /  i ]_ X  .x.  ( 1r `  R
) ) ,  (
[_ e  /  i ]_ X  .x.  ( 0g
`  R ) ) )
137 eqid 2467 . . . . . . . . . . . . . . . . . 18  |-  ( 1r
`  R )  =  ( 1r `  R
)
13840, 89, 137rngridm 17010 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  [_ e  /  i ]_ X  e.  K )  ->  ( [_ e  /  i ]_ X  .x.  ( 1r
`  R ) )  =  [_ e  / 
i ]_ X )
13965, 100, 138syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( [_ e  /  i ]_ X  .x.  ( 1r
`  R ) )  =  [_ e  / 
i ]_ X )
14040, 89, 41rngrz 17023 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  Ring  /\  [_ e  /  i ]_ X  e.  K )  ->  ( [_ e  /  i ]_ X  .x.  ( 0g
`  R ) )  =  ( 0g `  R ) )
14165, 100, 140syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( [_ e  /  i ]_ X  .x.  ( 0g
`  R ) )  =  ( 0g `  R ) )
142139, 141ifeq12d 3959 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  if ( b  =  e ,  ( [_ e  /  i ]_ X  .x.  ( 1r `  R
) ) ,  (
[_ e  /  i ]_ X  .x.  ( 0g
`  R ) ) )  =  if ( b  =  e , 
[_ e  /  i ]_ X ,  ( 0g
`  R ) ) )
143136, 142syl5eq 2520 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )  =  if ( b  =  e , 
[_ e  /  i ]_ X ,  ( 0g
`  R ) ) )
144133, 143eqtr4d 2511 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  if ( b  =  e ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) )  =  ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) )
145144oveq2d 6298 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ( +g  `  R ) if ( b  =  e ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) )  =  ( if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ( +g  `  R
) ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) ) )
1461453ad2ant1 1017 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  ( if ( b  e.  d ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ( +g  `  R
) if ( b  =  e ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) )  =  ( if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ( +g  `  R
) ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) ) )
147131, 146eqtrd 2508 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  if (
b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) )  =  ( if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ( +g  `  R ) ( [_ e  / 
i ]_ X  .x.  if ( b  =  e ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) )
148147ifeq1d 3957 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  if (
a  =  L ,  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) )  =  if ( a  =  L ,  ( if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ( +g  `  R
) ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) ) ,  ( a M b ) ) )
149148mpt2eq3dva 6343 . . . . . . . 8  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  ( if ( b  e.  d ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ( +g  `  R
) ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) ) ,  ( a M b ) ) ) )
150149fveq2d 5868 . . . . . . 7  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  ( d  u. 
{ e } ) ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L , 
( if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ( +g  `  R ) ( [_ e  / 
i ]_ X  .x.  if ( b  =  e ,  ( 1r `  R ) ,  ( 0g `  R ) ) ) ) ,  ( a M b ) ) ) ) )
15140, 41rng0cl 17007 . . . . . . . . . . 11  |-  ( R  e.  Ring  ->  ( 0g
`  R )  e.  K )
15265, 151syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( 0g `  R
)  e.  K )
1531523ad2ant1 1017 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  ( 0g `  R )  e.  K
)
154124, 153ifcld 3982 . . . . . . . 8  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  if (
b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) )  e.  K )
15540, 137rngidcl 17006 . . . . . . . . . . . 12  |-  ( R  e.  Ring  ->  ( 1r
`  R )  e.  K )
15665, 155syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( 1r `  R
)  e.  K )
157156, 152ifcld 3982 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  if ( b  =  e ,  ( 1r `  R ) ,  ( 0g `  R ) )  e.  K )
15840, 89rngcl 16999 . . . . . . . . . 10  |-  ( ( R  e.  Ring  /\  [_ e  /  i ]_ X  e.  K  /\  if ( b  =  e ,  ( 1r `  R
) ,  ( 0g
`  R ) )  e.  K )  -> 
( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )  e.  K )
15965, 100, 157, 158syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r `  R
) ,  ( 0g
`  R ) ) )  e.  K )
1601593ad2ant1 1017 . . . . . . . 8  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) )  e.  K )
16151adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  M : ( N  X.  N ) --> K )
162161fovrnda 6428 . . . . . . . . 9  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  ( a  e.  N  /\  b  e.  N ) )  -> 
( a M b )  e.  K )
1631623impb 1192 . . . . . . . 8  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  ( a M b )  e.  K )
16439, 40, 62, 63, 68, 154, 160, 163, 102mdetrlin2 18876 . . . . . . 7  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  ( if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ( +g  `  R
) ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) ) ,  ( a M b ) ) ) )  =  ( ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ( +g  `  R ) ( D `
 ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  (
[_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r `  R
) ,  ( 0g
`  R ) ) ) ,  ( a M b ) ) ) ) ) )
1651573ad2ant1 1017 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  a  e.  N  /\  b  e.  N
)  ->  if (
b  =  e ,  ( 1r `  R
) ,  ( 0g
`  R ) )  e.  K )
16639, 40, 89, 63, 68, 165, 163, 100, 102mdetrsca2 18873 . . . . . . . . 9  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) ,  ( a M b ) ) ) )  =  ( [_ e  /  i ]_ X  .x.  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  =  e ,  ( 1r `  R ) ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ) )
16743adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  ->  M  e.  B )
16844, 39, 79, 45, 137, 41maducoeval 18908 . . . . . . . . . . 11  |-  ( ( M  e.  B  /\  e  e.  N  /\  L  e.  N )  ->  ( e ( J `
 M ) L )  =  ( D `
 ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  =  e ,  ( 1r `  R ) ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) )
169167, 97, 102, 168syl3anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( e ( J `
 M ) L )  =  ( D `
 ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  =  e ,  ( 1r `  R ) ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) )
170169oveq2d 6298 . . . . . . . . 9  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( [_ e  /  i ]_ X  .x.  ( e ( J `  M
) L ) )  =  ( [_ e  /  i ]_ X  .x.  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  =  e ,  ( 1r `  R ) ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ) )
171166, 170eqtr4d 2511 . . . . . . . 8  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) ,  ( a M b ) ) ) )  =  ( [_ e  /  i ]_ X  .x.  ( e ( J `
 M ) L ) ) )
172171oveq2d 6298 . . . . . . 7  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) ( +g  `  R
) ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  ( [_ e  /  i ]_ X  .x.  if ( b  =  e ,  ( 1r
`  R ) ,  ( 0g `  R
) ) ) ,  ( a M b ) ) ) ) )  =  ( ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ( +g  `  R ) ( [_ e  /  i ]_ X  .x.  ( e ( J `
 M ) L ) ) ) )
173150, 164, 1723eqtrrd 2513 . . . . . 6  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) ( +g  `  R
) ( [_ e  /  i ]_ X  .x.  ( e ( J `
 M ) L ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  ( d  u. 
{ e } ) ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) )
174173adantr 465 . . . . 5  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  ( R  gsumg  ( b  e.  d  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) )  ->  (
( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ( +g  `  R
) ( [_ e  /  i ]_ X  .x.  ( e ( J `
 M ) L ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  ( d  u. 
{ e } ) ,  [_ b  / 
i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) )
175110, 112, 1743eqtrd 2512 . . . 4  |-  ( ( ( ph  /\  (
d  C_  N  /\  e  e.  ( N  \  d ) ) )  /\  ( R  gsumg  ( b  e.  d  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) ) )  ->  ( R  gsumg  ( b  e.  ( d  u.  { e } )  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) )
176175ex 434 . . 3  |-  ( (
ph  /\  ( d  C_  N  /\  e  e.  ( N  \  d
) ) )  -> 
( ( R  gsumg  ( b  e.  d  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  d , 
[_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) )  ->  ( R  gsumg  ( b  e.  ( d  u.  { e } )  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) ) )  =  ( D `  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  ( d  u.  { e } ) ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) ) )
1778, 16, 24, 32, 61, 176, 48findcard2d 7758 . 2  |-  ( ph  ->  ( R  gsumg  ( b  e.  N  |->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )  =  ( D `  (
a  e.  N , 
b  e.  N  |->  if ( a  =  L ,  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) ,  ( a M b ) ) ) ) )
178 nfcv 2629 . . . 4  |-  F/_ b
( X  .x.  (
i ( J `  M ) L ) )
179 nfcsb1v 3451 . . . . 5  |-  F/_ i [_ b  /  i ]_ X
180 nfcv 2629 . . . . 5  |-  F/_ i  .x.
181 nfcv 2629 . . . . 5  |-  F/_ i
( b ( J `
 M ) L )
182179, 180, 181nfov 6305 . . . 4  |-  F/_ i
( [_ b  /  i ]_ X  .x.  ( b ( J `  M
) L ) )
183 csbeq1a 3444 . . . . 5  |-  ( i  =  b  ->  X  =  [_ b  /  i ]_ X )
184 oveq1 6289 . . . . 5  |-  ( i  =  b  ->  (
i ( J `  M ) L )  =  ( b ( J `  M ) L ) )
185183, 184oveq12d 6300 . . . 4  |-  ( i  =  b  ->  ( X  .x.  ( i ( J `  M ) L ) )  =  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) )
186178, 182, 185cbvmpt 4537 . . 3  |-  ( i  e.  N  |->  ( X 
.x.  ( i ( J `  M ) L ) ) )  =  ( b  e.  N  |->  ( [_ b  /  i ]_ X  .x.  ( b ( J `
 M ) L ) ) )
187186oveq2i 6293 . 2  |-  ( R 
gsumg  ( i  e.  N  |->  ( X  .x.  (
i ( J `  M ) L ) ) ) )  =  ( R  gsumg  ( b  e.  N  |->  ( [_ b  / 
i ]_ X  .x.  (
b ( J `  M ) L ) ) ) )
188 nfcv 2629 . . . . 5  |-  F/_ a if ( j  =  L ,  X ,  ( j M i ) )
189 nfcv 2629 . . . . 5  |-  F/_ b if ( j  =  L ,  X ,  ( j M i ) )
190 nfcv 2629 . . . . 5  |-  F/_ j if ( a  =  L ,  [_ b  / 
i ]_ X ,  ( a M b ) )
191 nfv 1683 . . . . . 6  |-  F/ i  a  =  L
192 nfcv 2629 . . . . . 6  |-  F/_ i
( a M b )
193191, 179, 192nfif 3968 . . . . 5  |-  F/_ i if ( a  =  L ,  [_ b  / 
i ]_ X ,  ( a M b ) )
194 eqeq1 2471 . . . . . . 7  |-  ( j  =  a  ->  (
j  =  L  <->  a  =  L ) )
195194adantr 465 . . . . . 6  |-  ( ( j  =  a  /\  i  =  b )  ->  ( j  =  L  <-> 
a  =  L ) )
196183adantl 466 . . . . . 6  |-  ( ( j  =  a  /\  i  =  b )  ->  X  =  [_ b  /  i ]_ X
)
197 oveq12 6291 . . . . . 6  |-  ( ( j  =  a  /\  i  =  b )  ->  ( j M i )  =  ( a M b ) )
198195, 196, 197ifbieq12d 3966 . . . . 5  |-  ( ( j  =  a  /\  i  =  b )  ->  if ( j  =  L ,  X , 
( j M i ) )  =  if ( a  =  L ,  [_ b  / 
i ]_ X ,  ( a M b ) ) )
199188, 189, 190, 193, 198cbvmpt2 6358 . . . 4  |-  ( j  e.  N ,  i  e.  N  |->  if ( j  =  L ,  X ,  ( j M i ) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  [_ b  /  i ]_ X ,  ( a M b ) ) )
200 iftrue 3945 . . . . . . . 8  |-  ( b  e.  N  ->  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g
`  R ) )  =  [_ b  / 
i ]_ X )
201200eqcomd 2475 . . . . . . 7  |-  ( b  e.  N  ->  [_ b  /  i ]_ X  =  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g `  R ) ) )
202201adantl 466 . . . . . 6  |-  ( ( a  e.  N  /\  b  e.  N )  ->  [_ b  /  i ]_ X  =  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g
`  R ) ) )
203202ifeq1d 3957 . . . . 5  |-  ( ( a  e.  N  /\  b  e.  N )  ->  if ( a  =  L ,  [_ b  /  i ]_ X ,  ( a M b ) )  =  if ( a  =  L ,  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) )
204203mpt2eq3ia 6344 . . . 4  |-  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  [_ b  /  i ]_ X ,  ( a M b ) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) )
205199, 204eqtri 2496 . . 3  |-  ( j  e.  N ,  i  e.  N  |->  if ( j  =  L ,  X ,  ( j M i ) ) )  =  ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) )
206205fveq2i 5867 . 2  |-  ( D `
 ( j  e.  N ,  i  e.  N  |->  if ( j  =  L ,  X ,  ( j M i ) ) ) )  =  ( D `
 ( a  e.  N ,  b  e.  N  |->  if ( a  =  L ,  if ( b  e.  N ,  [_ b  /  i ]_ X ,  ( 0g
`  R ) ) ,  ( a M b ) ) ) )
207177, 187, 2063eqtr4g 2533 1  |-  ( ph  ->  ( R  gsumg  ( i  e.  N  |->  ( X  .x.  (
i ( J `  M ) L ) ) ) )  =  ( D `  (
j  e.  N , 
i  e.  N  |->  if ( j  =  L ,  X ,  ( j M i ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113   [_csb 3435    \ cdif 3473    u. cun 3474    C_ wss 3476   (/)c0 3785   ifcif 3939   {csn 4027    |-> cmpt 4505    X. cxp 4997   -->wf 5582   ` cfv 5586  (class class class)co 6282    |-> cmpt2 6284    ^m cmap 7417   Fincfn 7513   Basecbs 14486   +g cplusg 14551   .rcmulr 14552   0gc0g 14691    gsumg cgsu 14692   Mndcmnd 15722  CMndccmn 16594   1rcur 16943   Ringcrg 16986   CRingccrg 16987   Mat cmat 18676   maDet cmdat 18853   maAdju cmadu 18901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-xor 1361  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-ot 4036  df-uni 4246  df-int 4283  df-iun 4327  df-iin 4328  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-map 7419  df-pm 7420  df-ixp 7467  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-sup 7897  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-seq 12072  df-exp 12131  df-hash 12370  df-word 12504  df-concat 12506  df-s1 12507  df-substr 12508  df-splice 12509  df-reverse 12510  df-s2 12772  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-hom 14575  df-cco 14576  df-0g 14693  df-gsum 14694  df-prds 14699  df-pws 14701  df-mre 14837  df-mrc 14838  df-acs 14840  df-mnd 15728  df-mhm 15777  df-submnd 15778  df-grp 15858  df-minusg 15859  df-mulg 15861  df-subg 15993  df-ghm 16060  df-gim 16102  df-cntz 16150  df-oppg 16176  df-symg 16198  df-pmtr 16263  df-psgn 16312  df-cmn 16596  df-abl 16597  df-mgp 16932  df-ur 16944  df-rng 16988  df-cring 16989  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-dvr 17116  df-rnghom 17148  df-drng 17181  df-subrg 17210  df-sra 17601  df-rgmod 17602  df-cnfld 18192  df-zring 18257  df-zrh 18308  df-dsmm 18530  df-frlm 18545  df-mat 18677  df-mdet 18854  df-madu 18903
This theorem is referenced by:  madurid  18913
  Copyright terms: Public domain W3C validator