MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  maducoeval2 Structured version   Visualization version   Unicode version

Theorem maducoeval2 19665
Description: An entry of the adjunct (cofactor) matrix. (Contributed by SO, 17-Jul-2018.)
Hypotheses
Ref Expression
madufval.a  |-  A  =  ( N Mat  R )
madufval.d  |-  D  =  ( N maDet  R )
madufval.j  |-  J  =  ( N maAdju  R )
madufval.b  |-  B  =  ( Base `  A
)
madufval.o  |-  .1.  =  ( 1r `  R )
madufval.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
maducoeval2  |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N
)  ->  ( I
( J `  M
) H )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) ) ) )
Distinct variable groups:    k, N, l    R, k, l    k, M, l    k, I, l   
k, H, l    B, k, l    .0. , k    .1. , k
Allowed substitution hints:    A( k, l)    D( k, l)    .1. ( l)    J( k, l)    .0. ( l)

Proof of Theorem maducoeval2
Dummy variables  n  r  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2518 . . . . . . . 8  |-  ( m  =  (/)  ->  ( k  e.  m  <->  k  e.  (/) ) )
21ifbid 3903 . . . . . . 7  |-  ( m  =  (/)  ->  if ( k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) )  =  if ( k  e.  (/) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
32ifeq2d 3900 . . . . . 6  |-  ( m  =  (/)  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  (/) ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )
43mpt2eq3dv 6357 . . . . 5  |-  ( m  =  (/)  ->  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  (/) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) )
54fveq2d 5869 . . . 4  |-  ( m  =  (/)  ->  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  (/) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )
65eqeq2d 2461 . . 3  |-  ( m  =  (/)  ->  ( ( I ( J `  M ) H )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  m ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) )  <->  ( I
( J `  M
) H )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  (/) ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) ) ) )
7 eleq2 2518 . . . . . . . 8  |-  ( m  =  n  ->  (
k  e.  m  <->  k  e.  n ) )
87ifbid 3903 . . . . . . 7  |-  ( m  =  n  ->  if ( k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) )  =  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )
98ifeq2d 3900 . . . . . 6  |-  ( m  =  n  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )
109mpt2eq3dv 6357 . . . . 5  |-  ( m  =  n  ->  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) )
1110fveq2d 5869 . . . 4  |-  ( m  =  n  ->  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )
1211eqeq2d 2461 . . 3  |-  ( m  =  n  ->  (
( I ( J `
 M ) H )  =  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  <-> 
( I ( J `
 M ) H )  =  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) ) ) )
13 eleq2 2518 . . . . . . . 8  |-  ( m  =  ( n  u. 
{ r } )  ->  ( k  e.  m  <->  k  e.  ( n  u.  { r } ) ) )
1413ifbid 3903 . . . . . . 7  |-  ( m  =  ( n  u. 
{ r } )  ->  if ( k  e.  m ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) )  =  if ( k  e.  ( n  u. 
{ r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
1514ifeq2d 3900 . . . . . 6  |-  ( m  =  ( n  u. 
{ r } )  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )
1615mpt2eq3dv 6357 . . . . 5  |-  ( m  =  ( n  u. 
{ r } )  ->  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( n  u.  {
r } ) ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )
1716fveq2d 5869 . . . 4  |-  ( m  =  ( n  u. 
{ r } )  ->  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  m ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )
1817eqeq2d 2461 . . 3  |-  ( m  =  ( n  u. 
{ r } )  ->  ( ( I ( J `  M
) H )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  <-> 
( I ( J `
 M ) H )  =  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) ) )
19 eleq2 2518 . . . . . . . 8  |-  ( m  =  ( N  \  { H } )  -> 
( k  e.  m  <->  k  e.  ( N  \  { H } ) ) )
2019ifbid 3903 . . . . . . 7  |-  ( m  =  ( N  \  { H } )  ->  if ( k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) )  =  if ( k  e.  ( N 
\  { H }
) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
2120ifeq2d 3900 . . . . . 6  |-  ( m  =  ( N  \  { H } )  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )
2221mpt2eq3dv 6357 . . . . 5  |-  ( m  =  ( N  \  { H } )  -> 
( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  m ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( N 
\  { H }
) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) )
2322fveq2d 5869 . . . 4  |-  ( m  =  ( N  \  { H } )  -> 
( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )
2423eqeq2d 2461 . . 3  |-  ( m  =  ( N  \  { H } )  -> 
( ( I ( J `  M ) H )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  m ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  <-> 
( I ( J `
 M ) H )  =  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( N 
\  { H }
) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) ) )
25 madufval.a . . . . . 6  |-  A  =  ( N Mat  R )
26 madufval.d . . . . . 6  |-  D  =  ( N maDet  R )
27 madufval.j . . . . . 6  |-  J  =  ( N maAdju  R )
28 madufval.b . . . . . 6  |-  B  =  ( Base `  A
)
29 madufval.o . . . . . 6  |-  .1.  =  ( 1r `  R )
30 madufval.z . . . . . 6  |-  .0.  =  ( 0g `  R )
3125, 26, 27, 28, 29, 30maducoeval 19664 . . . . 5  |-  ( ( M  e.  B  /\  I  e.  N  /\  H  e.  N )  ->  ( I ( J `
 M ) H )  =  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  ( k M l ) ) ) ) )
32313adant1l 1260 . . . 4  |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N
)  ->  ( I
( J `  M
) H )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  ( k M l ) ) ) ) )
33 noel 3735 . . . . . . . 8  |-  -.  k  e.  (/)
34 iffalse 3890 . . . . . . . 8  |-  ( -.  k  e.  (/)  ->  if ( k  e.  (/) ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) )  =  ( k M l ) )
3533, 34mp1i 13 . . . . . . 7  |-  ( ( k  e.  N  /\  l  e.  N )  ->  if ( k  e.  (/) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) )  =  ( k M l ) )
3635ifeq2d 3900 . . . . . 6  |-  ( ( k  e.  N  /\  l  e.  N )  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  (/) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  ( k M l ) ) )
3736mpt2eq3ia 6356 . . . . 5  |-  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  (/) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )  =  ( k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  ( k M l ) ) )
3837fveq2i 5868 . . . 4  |-  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  (/) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  ( k M l ) ) ) )
3932, 38syl6eqr 2503 . . 3  |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N
)  ->  ( I
( J `  M
) H )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  (/) ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) ) )
40 eqid 2451 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
41 eqid 2451 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
42 eqid 2451 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
43 simpl1l 1059 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  R  e.  CRing )
44 simp1r 1033 . . . . . . . . 9  |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N
)  ->  M  e.  B )
4525, 28matrcl 19437 . . . . . . . . . 10  |-  ( M  e.  B  ->  ( N  e.  Fin  /\  R  e.  _V ) )
4645simpld 461 . . . . . . . . 9  |-  ( M  e.  B  ->  N  e.  Fin )
4744, 46syl 17 . . . . . . . 8  |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N
)  ->  N  e.  Fin )
4847adantr 467 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  N  e.  Fin )
49 simp1l 1032 . . . . . . . . . . 11  |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N
)  ->  R  e.  CRing
)
5049ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  R  e.  CRing )
51 crngring 17791 . . . . . . . . . 10  |-  ( R  e.  CRing  ->  R  e.  Ring )
5250, 51syl 17 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  R  e.  Ring )
5340, 30ring0cl 17802 . . . . . . . . 9  |-  ( R  e.  Ring  ->  .0.  e.  ( Base `  R )
)
5452, 53syl 17 . . . . . . . 8  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  .0.  e.  ( Base `  R ) )
55 simpl1r 1060 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  M  e.  B
)
5625, 40, 28matbas2i 19447 . . . . . . . . . . 11  |-  ( M  e.  B  ->  M  e.  ( ( Base `  R
)  ^m  ( N  X.  N ) ) )
57 elmapi 7493 . . . . . . . . . . 11  |-  ( M  e.  ( ( Base `  R )  ^m  ( N  X.  N ) )  ->  M : ( N  X.  N ) --> ( Base `  R
) )
5855, 56, 573syl 18 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  M : ( N  X.  N ) --> ( Base `  R
) )
5958adantr 467 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  M : ( N  X.  N ) --> (
Base `  R )
)
60 eldifi 3555 . . . . . . . . . . . 12  |-  ( r  e.  ( ( N 
\  { H }
)  \  n )  ->  r  e.  ( N 
\  { H }
) )
6160ad2antll 735 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  r  e.  ( N  \  { H } ) )
6261eldifad 3416 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  r  e.  N
)
6362adantr 467 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  r  e.  N )
64 simpr 463 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  l  e.  N )
6559, 63, 64fovrnd 6441 . . . . . . . 8  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  ( r M l )  e.  ( Base `  R ) )
6654, 65ifcld 3924 . . . . . . 7  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  if ( l  =  I ,  .0.  , 
( r M l ) )  e.  (
Base `  R )
)
6740, 29ringidcl 17801 . . . . . . . . 9  |-  ( R  e.  Ring  ->  .1.  e.  ( Base `  R )
)
6852, 67syl 17 . . . . . . . 8  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  .1.  e.  ( Base `  R ) )
6968, 54ifcld 3924 . . . . . . 7  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  if ( l  =  I ,  .1.  ,  .0.  )  e.  ( Base `  R ) )
70543adant2 1027 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  .0.  e.  ( Base `  R ) )
7158fovrnda 6440 . . . . . . . . . 10  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  ( k  e.  N  /\  l  e.  N
) )  ->  (
k M l )  e.  ( Base `  R
) )
72713impb 1204 . . . . . . . . 9  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  ( k M l )  e.  ( Base `  R ) )
7370, 72ifcld 3924 . . . . . . . 8  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  if ( l  =  I ,  .0.  , 
( k M l ) )  e.  (
Base `  R )
)
7473, 72ifcld 3924 . . . . . . 7  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) )  e.  ( Base `  R
) )
75 simpl2 1012 . . . . . . . 8  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  I  e.  N
)
7658, 62, 75fovrnd 6441 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  ( r M I )  e.  (
Base `  R )
)
77 simpl3 1013 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  H  e.  N
)
78 eldifsni 4098 . . . . . . . 8  |-  ( r  e.  ( N  \  { H } )  -> 
r  =/=  H )
7961, 78syl 17 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  r  =/=  H
)
8026, 40, 41, 42, 43, 48, 66, 69, 74, 76, 62, 77, 79mdetero 19635 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  r ,  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R
) ( ( r M I ) ( .r `  R ) if ( l  =  I ,  .1.  ,  .0.  ) ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) ) ) )
81 ifnot 3926 . . . . . . . . . . . . . . . . 17  |-  if ( -.  l  =  I ,  ( r M l ) ,  .0.  )  =  if (
l  =  I ,  .0.  ,  ( r M l ) )
8281eqcomi 2460 . . . . . . . . . . . . . . . 16  |-  if ( l  =  I ,  .0.  ,  ( r M l ) )  =  if ( -.  l  =  I ,  ( r M l ) ,  .0.  )
8382a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  if ( l  =  I ,  .0.  , 
( r M l ) )  =  if ( -.  l  =  I ,  ( r M l ) ,  .0.  ) )
84 ovif2 6374 . . . . . . . . . . . . . . . 16  |-  ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) )  =  if ( l  =  I ,  ( ( r M I ) ( .r `  R
)  .1.  ) ,  ( ( r M I ) ( .r
`  R )  .0.  ) )
8576adantr 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  ( r M I )  e.  ( Base `  R ) )
8640, 42, 29ringridm 17805 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( R  e.  Ring  /\  (
r M I )  e.  ( Base `  R
) )  ->  (
( r M I ) ( .r `  R )  .1.  )  =  ( r M I ) )
8752, 85, 86syl2anc 667 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  ( ( r M I ) ( .r
`  R )  .1.  )  =  ( r M I ) )
8887adantr 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  /\  l  =  I
)  ->  ( (
r M I ) ( .r `  R
)  .1.  )  =  ( r M I ) )
89 oveq2 6298 . . . . . . . . . . . . . . . . . . . 20  |-  ( l  =  I  ->  (
r M l )  =  ( r M I ) )
9089adantl 468 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  /\  l  =  I
)  ->  ( r M l )  =  ( r M I ) )
9188, 90eqtr4d 2488 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  /\  l  =  I
)  ->  ( (
r M I ) ( .r `  R
)  .1.  )  =  ( r M l ) )
9291ifeq1da 3911 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  if ( l  =  I ,  ( ( r M I ) ( .r `  R
)  .1.  ) ,  ( ( r M I ) ( .r
`  R )  .0.  ) )  =  if ( l  =  I ,  ( r M l ) ,  ( ( r M I ) ( .r `  R )  .0.  )
) )
9340, 42, 30ringrz 17818 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  e.  Ring  /\  (
r M I )  e.  ( Base `  R
) )  ->  (
( r M I ) ( .r `  R )  .0.  )  =  .0.  )
9452, 85, 93syl2anc 667 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  ( ( r M I ) ( .r
`  R )  .0.  )  =  .0.  )
9594ifeq2d 3900 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  if ( l  =  I ,  ( r M l ) ,  ( ( r M I ) ( .r
`  R )  .0.  ) )  =  if ( l  =  I ,  ( r M l ) ,  .0.  ) )
9692, 95eqtrd 2485 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  if ( l  =  I ,  ( ( r M I ) ( .r `  R
)  .1.  ) ,  ( ( r M I ) ( .r
`  R )  .0.  ) )  =  if ( l  =  I ,  ( r M l ) ,  .0.  ) )
9784, 96syl5eq 2497 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  ( ( r M I ) ( .r
`  R ) if ( l  =  I ,  .1.  ,  .0.  ) )  =  if ( l  =  I ,  ( r M l ) ,  .0.  ) )
9883, 97oveq12d 6308 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R ) ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) ) )  =  ( if ( -.  l  =  I ,  ( r M l ) ,  .0.  ) ( +g  `  R
) if ( l  =  I ,  ( r M l ) ,  .0.  ) ) )
99 ringmnd 17789 . . . . . . . . . . . . . . . 16  |-  ( R  e.  Ring  ->  R  e. 
Mnd )
10052, 99syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  R  e.  Mnd )
101 id 22 . . . . . . . . . . . . . . . . 17  |-  ( -.  l  =  I  ->  -.  l  =  I
)
102 imnan 424 . . . . . . . . . . . . . . . . 17  |-  ( ( -.  l  =  I  ->  -.  l  =  I )  <->  -.  ( -.  l  =  I  /\  l  =  I
) )
103101, 102mpbi 212 . . . . . . . . . . . . . . . 16  |-  -.  ( -.  l  =  I  /\  l  =  I
)
104103a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  -.  ( -.  l  =  I  /\  l  =  I ) )
10540, 30, 41mndifsplit 19661 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Mnd  /\  ( r M l )  e.  ( Base `  R )  /\  -.  ( -.  l  =  I  /\  l  =  I ) )  ->  if ( ( -.  l  =  I  \/  l  =  I ) ,  ( r M l ) ,  .0.  )  =  ( if ( -.  l  =  I ,  ( r M l ) ,  .0.  )
( +g  `  R ) if ( l  =  I ,  ( r M l ) ,  .0.  ) ) )
106100, 65, 104, 105syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  if ( ( -.  l  =  I  \/  l  =  I ) ,  ( r M l ) ,  .0.  )  =  ( if ( -.  l  =  I ,  ( r M l ) ,  .0.  ) ( +g  `  R ) if ( l  =  I ,  ( r M l ) ,  .0.  )
) )
107 pm2.1 419 . . . . . . . . . . . . . . 15  |-  ( -.  l  =  I  \/  l  =  I )
108 iftrue 3887 . . . . . . . . . . . . . . 15  |-  ( ( -.  l  =  I  \/  l  =  I )  ->  if (
( -.  l  =  I  \/  l  =  I ) ,  ( r M l ) ,  .0.  )  =  ( r M l ) )
109107, 108mp1i 13 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  if ( ( -.  l  =  I  \/  l  =  I ) ,  ( r M l ) ,  .0.  )  =  ( r M l ) )
11098, 106, 1093eqtr2d 2491 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  l  e.  N )  ->  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R ) ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) ) )  =  ( r M l ) )
1111103adant2 1027 . . . . . . . . . . . 12  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R ) ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) ) )  =  ( r M l ) )
112 oveq1 6297 . . . . . . . . . . . . 13  |-  ( k  =  r  ->  (
k M l )  =  ( r M l ) )
113112eqeq2d 2461 . . . . . . . . . . . 12  |-  ( k  =  r  ->  (
( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R ) ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) ) )  =  ( k M l )  <->  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R
) ( ( r M I ) ( .r `  R ) if ( l  =  I ,  .1.  ,  .0.  ) ) )  =  ( r M l ) ) )
114111, 113syl5ibrcom 226 . . . . . . . . . . 11  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  ( k  =  r  ->  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R
) ( ( r M I ) ( .r `  R ) if ( l  =  I ,  .1.  ,  .0.  ) ) )  =  ( k M l ) ) )
115114imp 431 . . . . . . . . . 10  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  /\  k  =  r
)  ->  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R
) ( ( r M I ) ( .r `  R ) if ( l  =  I ,  .1.  ,  .0.  ) ) )  =  ( k M l ) )
116 iftrue 3887 . . . . . . . . . . 11  |-  ( k  =  r  ->  if ( k  =  r ,  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R
) ( ( r M I ) ( .r `  R ) if ( l  =  I ,  .1.  ,  .0.  ) ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )  =  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R
) ( ( r M I ) ( .r `  R ) if ( l  =  I ,  .1.  ,  .0.  ) ) ) )
117116adantl 468 . . . . . . . . . 10  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  /\  k  =  r
)  ->  if (
k  =  r ,  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R ) ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R ) ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) ) ) )
11879neneqd 2629 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  -.  r  =  H )
1191183ad2ant1 1029 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  -.  r  =  H )
120 eqeq1 2455 . . . . . . . . . . . . . . 15  |-  ( k  =  r  ->  (
k  =  H  <->  r  =  H ) )
121120notbid 296 . . . . . . . . . . . . . 14  |-  ( k  =  r  ->  ( -.  k  =  H  <->  -.  r  =  H ) )
122119, 121syl5ibrcom 226 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  ( k  =  r  ->  -.  k  =  H ) )
123122imp 431 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  /\  k  =  r
)  ->  -.  k  =  H )
124123iffalsed 3892 . . . . . . . . . . 11  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  /\  k  =  r
)  ->  if (
k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )
125 eldifn 3556 . . . . . . . . . . . . . . . 16  |-  ( r  e.  ( ( N 
\  { H }
)  \  n )  ->  -.  r  e.  n
)
126125ad2antll 735 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  -.  r  e.  n )
1271263ad2ant1 1029 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  -.  r  e.  n
)
128 eleq1 2517 . . . . . . . . . . . . . . 15  |-  ( k  =  r  ->  (
k  e.  n  <->  r  e.  n ) )
129128notbid 296 . . . . . . . . . . . . . 14  |-  ( k  =  r  ->  ( -.  k  e.  n  <->  -.  r  e.  n ) )
130127, 129syl5ibrcom 226 . . . . . . . . . . . . 13  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  ( k  =  r  ->  -.  k  e.  n ) )
131130imp 431 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  /\  k  =  r
)  ->  -.  k  e.  n )
132131iffalsed 3892 . . . . . . . . . . 11  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  /\  k  =  r
)  ->  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) )  =  ( k M l ) )
133124, 132eqtrd 2485 . . . . . . . . . 10  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  /\  k  =  r
)  ->  if (
k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  ( k M l ) )
134115, 117, 1333eqtr4d 2495 . . . . . . . . 9  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  /\  k  =  r
)  ->  if (
k  =  r ,  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R ) ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )
135 iffalse 3890 . . . . . . . . . 10  |-  ( -.  k  =  r  ->  if ( k  =  r ,  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R
) ( ( r M I ) ( .r `  R ) if ( l  =  I ,  .1.  ,  .0.  ) ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )
136135adantl 468 . . . . . . . . 9  |-  ( ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  /\  -.  k  =  r )  ->  if (
k  =  r ,  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R ) ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )
137134, 136pm2.61dan 800 . . . . . . . 8  |-  ( ( ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N )  /\  (
n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n
) ) )  /\  k  e.  N  /\  l  e.  N )  ->  if ( k  =  r ,  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R
) ( ( r M I ) ( .r `  R ) if ( l  =  I ,  .1.  ,  .0.  ) ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )
138137mpt2eq3dva 6355 . . . . . . 7  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  ( k  e.  N ,  l  e.  N  |->  if ( k  =  r ,  ( if ( l  =  I ,  .0.  , 
( r M l ) ) ( +g  `  R ) ( ( r M I ) ( .r `  R
) if ( l  =  I ,  .1.  ,  .0.  ) ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )
139138fveq2d 5869 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  r ,  ( if ( l  =  I ,  .0.  ,  ( r M l ) ) ( +g  `  R
) ( ( r M I ) ( .r `  R ) if ( l  =  I ,  .1.  ,  .0.  ) ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) ) )
140 neeq2 2687 . . . . . . . . . . . . . . 15  |-  ( k  =  H  ->  (
r  =/=  k  <->  r  =/=  H ) )
141140biimparc 490 . . . . . . . . . . . . . 14  |-  ( ( r  =/=  H  /\  k  =  H )  ->  r  =/=  k )
142141necomd 2679 . . . . . . . . . . . . 13  |-  ( ( r  =/=  H  /\  k  =  H )  ->  k  =/=  r )
143142neneqd 2629 . . . . . . . . . . . 12  |-  ( ( r  =/=  H  /\  k  =  H )  ->  -.  k  =  r )
144143iffalsed 3892 . . . . . . . . . . 11  |-  ( ( r  =/=  H  /\  k  =  H )  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( l  =  I ,  .1.  ,  .0.  ) )  =  if ( l  =  I ,  .1.  ,  .0.  ) )
145 iftrue 3887 . . . . . . . . . . . . 13  |-  ( k  =  H  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( l  =  I ,  .1.  ,  .0.  ) )
146145adantl 468 . . . . . . . . . . . 12  |-  ( ( r  =/=  H  /\  k  =  H )  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( l  =  I ,  .1.  ,  .0.  ) )
147146ifeq2d 3900 . . . . . . . . . . 11  |-  ( ( r  =/=  H  /\  k  =  H )  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( l  =  I ,  .1.  ,  .0.  ) ) )
148 iftrue 3887 . . . . . . . . . . . 12  |-  ( k  =  H  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( l  =  I ,  .1.  ,  .0.  )
)
149148adantl 468 . . . . . . . . . . 11  |-  ( ( r  =/=  H  /\  k  =  H )  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( n  u.  {
r } ) ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( l  =  I ,  .1.  ,  .0.  ) )
150144, 147, 1493eqtr4d 2495 . . . . . . . . . 10  |-  ( ( r  =/=  H  /\  k  =  H )  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( n  u.  {
r } ) ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )
151112ifeq2d 3900 . . . . . . . . . . . . . 14  |-  ( k  =  r  ->  if ( l  =  I ,  .0.  ,  ( k M l ) )  =  if ( l  =  I ,  .0.  ,  ( r M l ) ) )
152 ssnid 3997 . . . . . . . . . . . . . . . . 17  |-  r  e. 
{ r }
153 elun2 3602 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  { r }  ->  r  e.  ( n  u.  { r } ) )
154152, 153ax-mp 5 . . . . . . . . . . . . . . . 16  |-  r  e.  ( n  u.  {
r } )
155 eleq1 2517 . . . . . . . . . . . . . . . 16  |-  ( k  =  r  ->  (
k  e.  ( n  u.  { r } )  <->  r  e.  ( n  u.  { r } ) ) )
156154, 155mpbiri 237 . . . . . . . . . . . . . . 15  |-  ( k  =  r  ->  k  e.  ( n  u.  {
r } ) )
157156iftrued 3889 . . . . . . . . . . . . . 14  |-  ( k  =  r  ->  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) )  =  if ( l  =  I ,  .0.  ,  ( k M l ) ) )
158 iftrue 3887 . . . . . . . . . . . . . 14  |-  ( k  =  r  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( l  =  I ,  .0.  ,  ( r M l ) ) )
159151, 157, 1583eqtr4rd 2496 . . . . . . . . . . . . 13  |-  ( k  =  r  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
160159adantl 468 . . . . . . . . . . . 12  |-  ( ( ( r  =/=  H  /\  -.  k  =  H )  /\  k  =  r )  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
161 iffalse 3890 . . . . . . . . . . . . . 14  |-  ( -.  k  =  r  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )
162 orc 387 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  n  ->  (
k  e.  n  \/  k  =  r ) )
163 orel2 385 . . . . . . . . . . . . . . . . 17  |-  ( -.  k  =  r  -> 
( ( k  e.  n  \/  k  =  r )  ->  k  e.  n ) )
164162, 163impbid2 208 . . . . . . . . . . . . . . . 16  |-  ( -.  k  =  r  -> 
( k  e.  n  <->  ( k  e.  n  \/  k  =  r ) ) )
165 elun 3574 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  ( n  u. 
{ r } )  <-> 
( k  e.  n  \/  k  e.  { r } ) )
166 elsn 3982 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  { r }  <-> 
k  =  r )
167166orbi2i 522 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  n  \/  k  e.  { r } )  <->  ( k  e.  n  \/  k  =  r ) )
168165, 167bitr2i 254 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  n  \/  k  =  r )  <-> 
k  e.  ( n  u.  { r } ) )
169164, 168syl6bb 265 . . . . . . . . . . . . . . 15  |-  ( -.  k  =  r  -> 
( k  e.  n  <->  k  e.  ( n  u. 
{ r } ) ) )
170169ifbid 3903 . . . . . . . . . . . . . 14  |-  ( -.  k  =  r  ->  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) )  =  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
171161, 170eqtrd 2485 . . . . . . . . . . . . 13  |-  ( -.  k  =  r  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
172171adantl 468 . . . . . . . . . . . 12  |-  ( ( ( r  =/=  H  /\  -.  k  =  H )  /\  -.  k  =  r )  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
173160, 172pm2.61dan 800 . . . . . . . . . . 11  |-  ( ( r  =/=  H  /\  -.  k  =  H
)  ->  if (
k  =  r ,  if ( l  =  I ,  .0.  , 
( r M l ) ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
174 iffalse 3890 . . . . . . . . . . . . 13  |-  ( -.  k  =  H  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) )
175174ifeq2d 3900 . . . . . . . . . . . 12  |-  ( -.  k  =  H  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )
176175adantl 468 . . . . . . . . . . 11  |-  ( ( r  =/=  H  /\  -.  k  =  H
)  ->  if (
k  =  r ,  if ( l  =  I ,  .0.  , 
( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )
177 iffalse 3890 . . . . . . . . . . . 12  |-  ( -.  k  =  H  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
178177adantl 468 . . . . . . . . . . 11  |-  ( ( r  =/=  H  /\  -.  k  =  H
)  ->  if (
k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  ( n  u. 
{ r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
179173, 176, 1783eqtr4d 2495 . . . . . . . . . 10  |-  ( ( r  =/=  H  /\  -.  k  =  H
)  ->  if (
k  =  r ,  if ( l  =  I ,  .0.  , 
( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( n  u.  {
r } ) ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )
180150, 179pm2.61dan 800 . . . . . . . . 9  |-  ( r  =/=  H  ->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )  =  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( n  u.  {
r } ) ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) )
181180mpt2eq3dv 6357 . . . . . . . 8  |-  ( r  =/=  H  ->  (
k  e.  N , 
l  e.  N  |->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) )
182181fveq2d 5869 . . . . . . 7  |-  ( r  =/=  H  ->  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) ) )  =  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )
18379, 182syl 17 . . . . . 6  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  r ,  if ( l  =  I ,  .0.  ,  ( r M l ) ) ,  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) ) )  =  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )
18480, 139, 1833eqtr3d 2493 . . . . 5  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )
185184eqeq2d 2461 . . . 4  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  ( ( I ( J `  M
) H )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  <-> 
( I ( J `
 M ) H )  =  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) ) )
186185biimpd 211 . . 3  |-  ( ( ( ( R  e. 
CRing  /\  M  e.  B
)  /\  I  e.  N  /\  H  e.  N
)  /\  ( n  C_  ( N  \  { H } )  /\  r  e.  ( ( N  \  { H } )  \  n ) ) )  ->  ( ( I ( J `  M
) H )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  n ,  if ( l  =  I ,  .0.  , 
( k M l ) ) ,  ( k M l ) ) ) ) )  ->  ( I ( J `  M ) H )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( n  u.  { r } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) ) )
187 difss 3560 . . . 4  |-  ( N 
\  { H }
)  C_  N
188 ssfi 7792 . . . 4  |-  ( ( N  e.  Fin  /\  ( N  \  { H } )  C_  N
)  ->  ( N  \  { H } )  e.  Fin )
18947, 187, 188sylancl 668 . . 3  |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N
)  ->  ( N  \  { H } )  e.  Fin )
1906, 12, 18, 24, 39, 186, 189findcard2d 7813 . 2  |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N
)  ->  ( I
( J `  M
) H )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) ) )
191 iba 506 . . . . . . . 8  |-  ( k  =  H  ->  (
l  =  I  <->  ( l  =  I  /\  k  =  H ) ) )
192191ifbid 3903 . . . . . . 7  |-  ( k  =  H  ->  if ( l  =  I ,  .1.  ,  .0.  )  =  if (
( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) )
193 iftrue 3887 . . . . . . 7  |-  ( k  =  H  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( l  =  I ,  .1.  ,  .0.  )
)
194 iftrue 3887 . . . . . . . 8  |-  ( ( k  =  H  \/  l  =  I )  ->  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) )  =  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) )
195194orcs 396 . . . . . . 7  |-  ( k  =  H  ->  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) )  =  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) )
196192, 193, 1953eqtr4d 2495 . . . . . 6  |-  ( k  =  H  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) )
197196adantl 468 . . . . 5  |-  ( ( ( k  e.  N  /\  l  e.  N
)  /\  k  =  H )  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) )
198 iffalse 3890 . . . . . . 7  |-  ( -.  k  =  H  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  ( N 
\  { H }
) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
199198adantl 468 . . . . . 6  |-  ( ( ( k  e.  N  /\  l  e.  N
)  /\  -.  k  =  H )  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( k  e.  ( N 
\  { H }
) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )
200 id 22 . . . . . . . . . . 11  |-  ( -.  k  =  H  ->  -.  k  =  H
)
201200neqned 2631 . . . . . . . . . 10  |-  ( -.  k  =  H  -> 
k  =/=  H )
202201anim2i 573 . . . . . . . . 9  |-  ( ( k  e.  N  /\  -.  k  =  H
)  ->  ( k  e.  N  /\  k  =/=  H ) )
203202adantlr 721 . . . . . . . 8  |-  ( ( ( k  e.  N  /\  l  e.  N
)  /\  -.  k  =  H )  ->  (
k  e.  N  /\  k  =/=  H ) )
204 eldifsn 4097 . . . . . . . 8  |-  ( k  e.  ( N  \  { H } )  <->  ( k  e.  N  /\  k  =/=  H ) )
205203, 204sylibr 216 . . . . . . 7  |-  ( ( ( k  e.  N  /\  l  e.  N
)  /\  -.  k  =  H )  ->  k  e.  ( N  \  { H } ) )
206205iftrued 3889 . . . . . 6  |-  ( ( ( k  e.  N  /\  l  e.  N
)  /\  -.  k  =  H )  ->  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) )  =  if ( l  =  I ,  .0.  ,  ( k M l ) ) )
207 biorf 407 . . . . . . . 8  |-  ( -.  k  =  H  -> 
( l  =  I  <-> 
( k  =  H  \/  l  =  I ) ) )
208200intnand 927 . . . . . . . . . 10  |-  ( -.  k  =  H  ->  -.  ( l  =  I  /\  k  =  H ) )
209208iffalsed 3892 . . . . . . . . 9  |-  ( -.  k  =  H  ->  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  )  =  .0.  )
210209eqcomd 2457 . . . . . . . 8  |-  ( -.  k  =  H  ->  .0.  =  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  )
)
211207, 210ifbieq1d 3904 . . . . . . 7  |-  ( -.  k  =  H  ->  if ( l  =  I ,  .0.  ,  ( k M l ) )  =  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) )
212211adantl 468 . . . . . 6  |-  ( ( ( k  e.  N  /\  l  e.  N
)  /\  -.  k  =  H )  ->  if ( l  =  I ,  .0.  ,  ( k M l ) )  =  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) )
213199, 206, 2123eqtrd 2489 . . . . 5  |-  ( ( ( k  e.  N  /\  l  e.  N
)  /\  -.  k  =  H )  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) )
214197, 213pm2.61dan 800 . . . 4  |-  ( ( k  e.  N  /\  l  e.  N )  ->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if ( k  e.  ( N  \  { H } ) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) )  =  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) )
215214mpt2eq3ia 6356 . . 3  |-  ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( N 
\  { H }
) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) )  =  ( k  e.  N ,  l  e.  N  |->  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) )
216215fveq2i 5868 . 2  |-  ( D `
 ( k  e.  N ,  l  e.  N  |->  if ( k  =  H ,  if ( l  =  I ,  .1.  ,  .0.  ) ,  if (
k  e.  ( N 
\  { H }
) ,  if ( l  =  I ,  .0.  ,  ( k M l ) ) ,  ( k M l ) ) ) ) )  =  ( D `  ( k  e.  N ,  l  e.  N  |->  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) ) )
217190, 216syl6eq 2501 1  |-  ( ( ( R  e.  CRing  /\  M  e.  B )  /\  I  e.  N  /\  H  e.  N
)  ->  ( I
( J `  M
) H )  =  ( D `  (
k  e.  N , 
l  e.  N  |->  if ( ( k  =  H  \/  l  =  I ) ,  if ( ( l  =  I  /\  k  =  H ) ,  .1.  ,  .0.  ) ,  ( k M l ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   _Vcvv 3045    \ cdif 3401    u. cun 3402    C_ wss 3404   (/)c0 3731   ifcif 3881   {csn 3968    X. cxp 4832   -->wf 5578   ` cfv 5582  (class class class)co 6290    |-> cmpt2 6292    ^m cmap 7472   Fincfn 7569   Basecbs 15121   +g cplusg 15190   .rcmulr 15191   0gc0g 15338   Mndcmnd 16535   1rcur 17735   Ringcrg 17780   CRingccrg 17781   Mat cmat 19432   maDet cmdat 19609   maAdju cmadu 19657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-xor 1406  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-ot 3977  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-tpos 6973  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-pm 7475  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-sup 7956  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-rp 11303  df-fz 11785  df-fzo 11916  df-seq 12214  df-exp 12273  df-hash 12516  df-word 12664  df-lsw 12665  df-concat 12666  df-s1 12667  df-substr 12668  df-splice 12669  df-reverse 12670  df-s2 12944  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-0g 15340  df-gsum 15341  df-prds 15346  df-pws 15348  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-mhm 16582  df-submnd 16583  df-grp 16673  df-minusg 16674  df-mulg 16676  df-subg 16814  df-ghm 16881  df-gim 16923  df-cntz 16971  df-oppg 16997  df-symg 17019  df-pmtr 17083  df-psgn 17132  df-evpm 17133  df-cmn 17432  df-abl 17433  df-mgp 17724  df-ur 17736  df-ring 17782  df-cring 17783  df-oppr 17851  df-dvdsr 17869  df-unit 17870  df-invr 17900  df-dvr 17911  df-rnghom 17943  df-drng 17977  df-subrg 18006  df-sra 18395  df-rgmod 18396  df-cnfld 18971  df-zring 19040  df-zrh 19075  df-dsmm 19295  df-frlm 19310  df-mat 19433  df-mdet 19610  df-madu 19659
This theorem is referenced by:  madutpos  19667
  Copyright terms: Public domain W3C validator