![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > madetsmelbas | Structured version Unicode version |
Description: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
madetsmelbas.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
madetsmelbas.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
madetsmelbas.y |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
madetsmelbas.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
madetsmelbas.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
madetsmelbas.g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
madetsmelbas |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngrng 16763 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant1 1009 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | madetsmelbas.a |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | madetsmelbas.b |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | matrcl 18423 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 5 | simpld 459 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 6 | 3ad2ant2 1010 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | simp3 990 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | madetsmelbas.p |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | madetsmelbas.s |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | madetsmelbas.y |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 9, 10, 11 | zrhcopsgnelbas 18136 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 2, 7, 8, 12 | syl3anc 1219 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | madetsmelbas.g |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | eqid 2451 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 14, 15 | mgpbas 16704 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 14 | crngmgp 16761 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | 3ad2ant1 1009 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | simp2 989 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | 3, 4, 9 | matepmcl 18460 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 2, 8, 19, 20 | syl3anc 1219 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 16, 18, 7, 21 | gsummptcl 16565 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | eqid 2451 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | 15, 23 | rngcl 16766 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 2, 13, 22, 24 | syl3anc 1219 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1952 ax-ext 2430 ax-rep 4503 ax-sep 4513 ax-nul 4521 ax-pow 4570 ax-pr 4631 ax-un 6474 ax-inf2 7950 ax-cnex 9441 ax-resscn 9442 ax-1cn 9443 ax-icn 9444 ax-addcl 9445 ax-addrcl 9446 ax-mulcl 9447 ax-mulrcl 9448 ax-mulcom 9449 ax-addass 9450 ax-mulass 9451 ax-distr 9452 ax-i2m1 9453 ax-1ne0 9454 ax-1rid 9455 ax-rnegex 9456 ax-rrecex 9457 ax-cnre 9458 ax-pre-lttri 9459 ax-pre-lttrn 9460 ax-pre-ltadd 9461 ax-pre-mulgt0 9462 ax-addf 9464 ax-mulf 9465 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-xor 1352 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2264 df-mo 2265 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2601 df-ne 2646 df-nel 2647 df-ral 2800 df-rex 2801 df-reu 2802 df-rmo 2803 df-rab 2804 df-v 3072 df-sbc 3287 df-csb 3389 df-dif 3431 df-un 3433 df-in 3435 df-ss 3442 df-pss 3444 df-nul 3738 df-if 3892 df-pw 3962 df-sn 3978 df-pr 3980 df-tp 3982 df-op 3984 df-ot 3986 df-uni 4192 df-int 4229 df-iun 4273 df-iin 4274 df-br 4393 df-opab 4451 df-mpt 4452 df-tr 4486 df-eprel 4732 df-id 4736 df-po 4741 df-so 4742 df-fr 4779 df-se 4780 df-we 4781 df-ord 4822 df-on 4823 df-lim 4824 df-suc 4825 df-xp 4946 df-rel 4947 df-cnv 4948 df-co 4949 df-dm 4950 df-rn 4951 df-res 4952 df-ima 4953 df-iota 5481 df-fun 5520 df-fn 5521 df-f 5522 df-f1 5523 df-fo 5524 df-f1o 5525 df-fv 5526 df-isom 5527 df-riota 6153 df-ov 6195 df-oprab 6196 df-mpt2 6197 df-om 6579 df-1st 6679 df-2nd 6680 df-supp 6793 df-tpos 6847 df-recs 6934 df-rdg 6968 df-1o 7022 df-2o 7023 df-oadd 7026 df-er 7203 df-map 7318 df-ixp 7366 df-en 7413 df-dom 7414 df-sdom 7415 df-fin 7416 df-fsupp 7724 df-sup 7794 df-oi 7827 df-card 8212 df-pnf 9523 df-mnf 9524 df-xr 9525 df-ltxr 9526 df-le 9527 df-sub 9700 df-neg 9701 df-div 10097 df-nn 10426 df-2 10483 df-3 10484 df-4 10485 df-5 10486 df-6 10487 df-7 10488 df-8 10489 df-9 10490 df-10 10491 df-n0 10683 df-z 10750 df-dec 10859 df-uz 10965 df-rp 11095 df-fz 11541 df-fzo 11652 df-seq 11910 df-exp 11969 df-hash 12207 df-word 12333 df-concat 12335 df-s1 12336 df-substr 12337 df-splice 12338 df-reverse 12339 df-s2 12579 df-struct 14280 df-ndx 14281 df-slot 14282 df-base 14283 df-sets 14284 df-ress 14285 df-plusg 14355 df-mulr 14356 df-starv 14357 df-sca 14358 df-vsca 14359 df-ip 14360 df-tset 14361 df-ple 14362 df-ds 14364 df-unif 14365 df-hom 14366 df-cco 14367 df-0g 14484 df-gsum 14485 df-prds 14490 df-pws 14492 df-mre 14628 df-mrc 14629 df-acs 14631 df-mnd 15519 df-mhm 15568 df-submnd 15569 df-grp 15649 df-minusg 15650 df-mulg 15652 df-subg 15782 df-ghm 15849 df-gim 15891 df-cntz 15939 df-oppg 15965 df-symg 15987 df-pmtr 16052 df-psgn 16101 df-cmn 16385 df-mgp 16699 df-ur 16711 df-rng 16755 df-cring 16756 df-rnghom 16914 df-subrg 16971 df-sra 17361 df-rgmod 17362 df-cnfld 17930 df-zring 17995 df-zrh 18046 df-dsmm 18268 df-frlm 18283 df-mat 18393 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |