![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > m2detleiblem6 | Structured version Unicode version |
Description: Lemma 6 for m2detleib 18562. (Contributed by AV, 20-Dec-2018.) |
Ref | Expression |
---|---|
m2detleiblem1.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
m2detleiblem1.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
m2detleiblem1.y |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
m2detleiblem1.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
m2detleiblem1.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
m2detleiblem1.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
m2detleiblem6 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1ex 9485 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 2nn 10583 |
. . . . 5
![]() ![]() ![]() ![]() | |
3 | prex 4635 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | prid2 4085 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | eqid 2451 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | m2detleiblem1.p |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | m2detleiblem1.n |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 5, 6, 7 | symg2bas 16014 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 4, 8 | syl5eleqr 2546 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 1, 2, 9 | mp2an 672 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | eleq1 2523 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | 10, 11 | mpbiri 233 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | m2detleiblem1.y |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | m2detleiblem1.s |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | m2detleiblem1.o |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 7, 6, 13, 14, 15 | m2detleiblem1 18555 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 12, 16 | sylan2 474 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | fveq2 5792 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | 18 | adantl 466 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | eqid 2451 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | eqid 2451 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
22 | 7, 5, 6, 20, 21 | psgnprfval2 16140 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 19, 22 | syl6eq 2508 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 23 | oveq1d 6208 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | rnggrp 16765 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | eqid 2451 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | 26, 15 | rngidcl 16780 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | eqid 2451 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
29 | m2detleiblem1.i |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | 26, 28, 29 | mulgm1 15757 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 25, 27, 30 | syl2anc 661 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 31 | adantr 465 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 17, 24, 32 | 3eqtrd 2496 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1592 ax-4 1603 ax-5 1671 ax-6 1710 ax-7 1730 ax-8 1760 ax-9 1762 ax-10 1777 ax-11 1782 ax-12 1794 ax-13 1952 ax-ext 2430 ax-rep 4504 ax-sep 4514 ax-nul 4522 ax-pow 4571 ax-pr 4632 ax-un 6475 ax-inf2 7951 ax-cnex 9442 ax-resscn 9443 ax-1cn 9444 ax-icn 9445 ax-addcl 9446 ax-addrcl 9447 ax-mulcl 9448 ax-mulrcl 9449 ax-mulcom 9450 ax-addass 9451 ax-mulass 9452 ax-distr 9453 ax-i2m1 9454 ax-1ne0 9455 ax-1rid 9456 ax-rnegex 9457 ax-rrecex 9458 ax-cnre 9459 ax-pre-lttri 9460 ax-pre-lttrn 9461 ax-pre-ltadd 9462 ax-pre-mulgt0 9463 ax-addf 9465 ax-mulf 9466 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 966 df-3an 967 df-xor 1352 df-tru 1373 df-ex 1588 df-nf 1591 df-sb 1703 df-eu 2264 df-mo 2265 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2601 df-ne 2646 df-nel 2647 df-ral 2800 df-rex 2801 df-reu 2802 df-rmo 2803 df-rab 2804 df-v 3073 df-sbc 3288 df-csb 3390 df-dif 3432 df-un 3434 df-in 3436 df-ss 3443 df-pss 3445 df-nul 3739 df-if 3893 df-pw 3963 df-sn 3979 df-pr 3981 df-tp 3983 df-op 3985 df-ot 3987 df-uni 4193 df-int 4230 df-iun 4274 df-iin 4275 df-br 4394 df-opab 4452 df-mpt 4453 df-tr 4487 df-eprel 4733 df-id 4737 df-po 4742 df-so 4743 df-fr 4780 df-se 4781 df-we 4782 df-ord 4823 df-on 4824 df-lim 4825 df-suc 4826 df-xp 4947 df-rel 4948 df-cnv 4949 df-co 4950 df-dm 4951 df-rn 4952 df-res 4953 df-ima 4954 df-iota 5482 df-fun 5521 df-fn 5522 df-f 5523 df-f1 5524 df-fo 5525 df-f1o 5526 df-fv 5527 df-isom 5528 df-riota 6154 df-ov 6196 df-oprab 6197 df-mpt2 6198 df-om 6580 df-1st 6680 df-2nd 6681 df-tpos 6848 df-recs 6935 df-rdg 6969 df-1o 7023 df-2o 7024 df-oadd 7027 df-er 7204 df-map 7319 df-pm 7320 df-en 7414 df-dom 7415 df-sdom 7416 df-fin 7417 df-card 8213 df-cda 8441 df-pnf 9524 df-mnf 9525 df-xr 9526 df-ltxr 9527 df-le 9528 df-sub 9701 df-neg 9702 df-div 10098 df-nn 10427 df-2 10484 df-3 10485 df-4 10486 df-5 10487 df-6 10488 df-7 10489 df-8 10490 df-9 10491 df-10 10492 df-n0 10684 df-z 10751 df-dec 10860 df-uz 10966 df-rp 11096 df-fz 11548 df-fzo 11659 df-seq 11917 df-exp 11976 df-fac 12162 df-bc 12189 df-hash 12214 df-word 12340 df-concat 12342 df-s1 12343 df-substr 12344 df-splice 12345 df-reverse 12346 df-s2 12586 df-struct 14287 df-ndx 14288 df-slot 14289 df-base 14290 df-sets 14291 df-ress 14292 df-plusg 14362 df-mulr 14363 df-starv 14364 df-tset 14368 df-ple 14369 df-ds 14371 df-unif 14372 df-0g 14491 df-gsum 14492 df-mre 14635 df-mrc 14636 df-acs 14638 df-mnd 15526 df-mhm 15575 df-submnd 15576 df-grp 15656 df-minusg 15657 df-mulg 15659 df-subg 15789 df-ghm 15856 df-gim 15898 df-oppg 15972 df-symg 15994 df-pmtr 16059 df-psgn 16108 df-cmn 16392 df-mgp 16706 df-ur 16718 df-rng 16762 df-cring 16763 df-rnghom 16921 df-subrg 16978 df-cnfld 17937 df-zring 18002 df-zrh 18053 |
This theorem is referenced by: m2detleib 18562 |
Copyright terms: Public domain | W3C validator |