MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem4 Structured version   Unicode version

Theorem m2detleiblem4 19217
Description: Lemma 4 for m2detleib 19218. (Contributed by AV, 20-Dec-2018.) (Proof shortened by AV, 2-Jan-2019.)
Hypotheses
Ref Expression
m2detleiblem2.n  |-  N  =  { 1 ,  2 }
m2detleiblem2.p  |-  P  =  ( Base `  ( SymGrp `
 N ) )
m2detleiblem2.a  |-  A  =  ( N Mat  R )
m2detleiblem2.b  |-  B  =  ( Base `  A
)
m2detleiblem2.g  |-  G  =  (mulGrp `  R )
m2detleiblem3.m  |-  .x.  =  ( +g  `  G )
Assertion
Ref Expression
m2detleiblem4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  ( G  gsumg  ( n  e.  N  |->  ( ( Q `  n ) M n ) ) )  =  ( ( 2 M 1 )  .x.  (
1 M 2 ) ) )
Distinct variable groups:    B, n    n, M    n, N    P, n    Q, n    R, n
Allowed substitution hints:    A( n)    .x. ( n)    G( n)

Proof of Theorem m2detleiblem4
StepHypRef Expression
1 m2detleiblem2.g . . . 4  |-  G  =  (mulGrp `  R )
2 eqid 2382 . . . 4  |-  ( Base `  R )  =  (
Base `  R )
31, 2mgpbas 17260 . . 3  |-  ( Base `  R )  =  (
Base `  G )
4 m2detleiblem3.m . . 3  |-  .x.  =  ( +g  `  G )
5 fvex 5784 . . . . 5  |-  (mulGrp `  R )  e.  _V
61, 5eqeltri 2466 . . . 4  |-  G  e. 
_V
76a1i 11 . . 3  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  G  e.  _V )
8 1ex 9502 . . . . . . 7  |-  1  e.  _V
9 2nn 10610 . . . . . . 7  |-  2  e.  NN
10 prex 4604 . . . . . . . . 9  |-  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  e.  _V
1110prid2 4053 . . . . . . . 8  |-  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  e.  { { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ,  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } }
12 eqid 2382 . . . . . . . . 9  |-  ( SymGrp `  N )  =  (
SymGrp `  N )
13 m2detleiblem2.p . . . . . . . . 9  |-  P  =  ( Base `  ( SymGrp `
 N ) )
14 m2detleiblem2.n . . . . . . . . 9  |-  N  =  { 1 ,  2 }
1512, 13, 14symg2bas 16540 . . . . . . . 8  |-  ( ( 1  e.  _V  /\  2  e.  NN )  ->  P  =  { { <. 1 ,  1 >. ,  <. 2 ,  2
>. } ,  { <. 1 ,  2 >. , 
<. 2 ,  1
>. } } )
1611, 15syl5eleqr 2477 . . . . . . 7  |-  ( ( 1  e.  _V  /\  2  e.  NN )  ->  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  e.  P
)
178, 9, 16mp2an 670 . . . . . 6  |-  { <. 1 ,  2 >. , 
<. 2 ,  1
>. }  e.  P
18 eleq1 2454 . . . . . 6  |-  ( Q  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( Q  e.  P  <->  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  e.  P
) )
1917, 18mpbiri 233 . . . . 5  |-  ( Q  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  Q  e.  P
)
20 m2detleiblem2.a . . . . . . 7  |-  A  =  ( N Mat  R )
2114oveq1i 6206 . . . . . . 7  |-  ( N Mat 
R )  =  ( { 1 ,  2 } Mat  R )
2220, 21eqtri 2411 . . . . . 6  |-  A  =  ( { 1 ,  2 } Mat  R )
23 m2detleiblem2.b . . . . . 6  |-  B  =  ( Base `  A
)
2414fveq2i 5777 . . . . . . . 8  |-  ( SymGrp `  N )  =  (
SymGrp `  { 1 ,  2 } )
2524fveq2i 5777 . . . . . . 7  |-  ( Base `  ( SymGrp `  N )
)  =  ( Base `  ( SymGrp `  { 1 ,  2 } ) )
2613, 25eqtri 2411 . . . . . 6  |-  P  =  ( Base `  ( SymGrp `
 { 1 ,  2 } ) )
2722, 23, 26matepmcl 19049 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  e.  P  /\  M  e.  B )  ->  A. n  e.  { 1 ,  2 }  ( ( Q `
 n ) M n )  e.  (
Base `  R )
)
2819, 27syl3an2 1260 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  A. n  e.  { 1 ,  2 }  ( ( Q `
 n ) M n )  e.  (
Base `  R )
)
29 mpteq1 4447 . . . . . 6  |-  ( N  =  { 1 ,  2 }  ->  (
n  e.  N  |->  ( ( Q `  n
) M n ) )  =  ( n  e.  { 1 ,  2 }  |->  ( ( Q `  n ) M n ) ) )
3014, 29ax-mp 5 . . . . 5  |-  ( n  e.  N  |->  ( ( Q `  n ) M n ) )  =  ( n  e. 
{ 1 ,  2 }  |->  ( ( Q `
 n ) M n ) )
3130fmpt 5954 . . . 4  |-  ( A. n  e.  { 1 ,  2 }  (
( Q `  n
) M n )  e.  ( Base `  R
)  <->  ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) : { 1 ,  2 } --> ( Base `  R
) )
3228, 31sylib 196 . . 3  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
n  e.  N  |->  ( ( Q `  n
) M n ) ) : { 1 ,  2 } --> ( Base `  R ) )
333, 4, 7, 32gsumpr12val 16026 . 2  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  ( G  gsumg  ( n  e.  N  |->  ( ( Q `  n ) M n ) ) )  =  ( ( ( n  e.  N  |->  ( ( Q `  n ) M n ) ) `
 1 )  .x.  ( ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) ` 
2 ) ) )
348prid1 4052 . . . . . 6  |-  1  e.  { 1 ,  2 }
3534, 14eleqtrri 2469 . . . . 5  |-  1  e.  N
3620, 23, 13matepmcl 19049 . . . . . . 7  |-  ( ( R  e.  Ring  /\  Q  e.  P  /\  M  e.  B )  ->  A. n  e.  N  ( ( Q `  n ) M n )  e.  ( Base `  R
) )
3719, 36syl3an2 1260 . . . . . 6  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  A. n  e.  N  ( ( Q `  n ) M n )  e.  ( Base `  R
) )
38 fveq2 5774 . . . . . . . . 9  |-  ( n  =  1  ->  ( Q `  n )  =  ( Q ` 
1 ) )
39 id 22 . . . . . . . . 9  |-  ( n  =  1  ->  n  =  1 )
4038, 39oveq12d 6214 . . . . . . . 8  |-  ( n  =  1  ->  (
( Q `  n
) M n )  =  ( ( Q `
 1 ) M 1 ) )
4140eleq1d 2451 . . . . . . 7  |-  ( n  =  1  ->  (
( ( Q `  n ) M n )  e.  ( Base `  R )  <->  ( ( Q `  1 ) M 1 )  e.  ( Base `  R
) ) )
4241rspcva 3133 . . . . . 6  |-  ( ( 1  e.  N  /\  A. n  e.  N  ( ( Q `  n
) M n )  e.  ( Base `  R
) )  ->  (
( Q `  1
) M 1 )  e.  ( Base `  R
) )
4335, 37, 42sylancr 661 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
( Q `  1
) M 1 )  e.  ( Base `  R
) )
44 eqid 2382 . . . . . 6  |-  ( n  e.  N  |->  ( ( Q `  n ) M n ) )  =  ( n  e.  N  |->  ( ( Q `
 n ) M n ) )
4540, 44fvmptg 5855 . . . . 5  |-  ( ( 1  e.  N  /\  ( ( Q ` 
1 ) M 1 )  e.  ( Base `  R ) )  -> 
( ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) ` 
1 )  =  ( ( Q `  1
) M 1 ) )
4635, 43, 45sylancr 661 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  1
)  =  ( ( Q `  1 ) M 1 ) )
47 fveq1 5773 . . . . . . 7  |-  ( Q  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( Q ` 
1 )  =  ( { <. 1 ,  2
>. ,  <. 2 ,  1 >. } `  1
) )
48 1ne2 10665 . . . . . . . 8  |-  1  =/=  2
49 2ex 10524 . . . . . . . . 9  |-  2  e.  _V
508, 49fvpr1 6016 . . . . . . . 8  |-  ( 1  =/=  2  ->  ( { <. 1 ,  2
>. ,  <. 2 ,  1 >. } `  1
)  =  2 )
5148, 50ax-mp 5 . . . . . . 7  |-  ( {
<. 1 ,  2
>. ,  <. 2 ,  1 >. } `  1
)  =  2
5247, 51syl6eq 2439 . . . . . 6  |-  ( Q  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( Q ` 
1 )  =  2 )
53523ad2ant2 1016 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  ( Q `  1 )  =  2 )
5453oveq1d 6211 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
( Q `  1
) M 1 )  =  ( 2 M 1 ) )
5546, 54eqtrd 2423 . . 3  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  1
)  =  ( 2 M 1 ) )
5649prid2 4053 . . . . . 6  |-  2  e.  { 1 ,  2 }
5756, 14eleqtrri 2469 . . . . 5  |-  2  e.  N
58 fveq2 5774 . . . . . . . . 9  |-  ( n  =  2  ->  ( Q `  n )  =  ( Q ` 
2 ) )
59 id 22 . . . . . . . . 9  |-  ( n  =  2  ->  n  =  2 )
6058, 59oveq12d 6214 . . . . . . . 8  |-  ( n  =  2  ->  (
( Q `  n
) M n )  =  ( ( Q `
 2 ) M 2 ) )
6160eleq1d 2451 . . . . . . 7  |-  ( n  =  2  ->  (
( ( Q `  n ) M n )  e.  ( Base `  R )  <->  ( ( Q `  2 ) M 2 )  e.  ( Base `  R
) ) )
6261rspcva 3133 . . . . . 6  |-  ( ( 2  e.  N  /\  A. n  e.  N  ( ( Q `  n
) M n )  e.  ( Base `  R
) )  ->  (
( Q `  2
) M 2 )  e.  ( Base `  R
) )
6357, 37, 62sylancr 661 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
( Q `  2
) M 2 )  e.  ( Base `  R
) )
6460, 44fvmptg 5855 . . . . 5  |-  ( ( 2  e.  N  /\  ( ( Q ` 
2 ) M 2 )  e.  ( Base `  R ) )  -> 
( ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) ` 
2 )  =  ( ( Q `  2
) M 2 ) )
6557, 63, 64sylancr 661 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  2
)  =  ( ( Q `  2 ) M 2 ) )
66 fveq1 5773 . . . . . . 7  |-  ( Q  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( Q ` 
2 )  =  ( { <. 1 ,  2
>. ,  <. 2 ,  1 >. } `  2
) )
6749, 8fvpr2 6017 . . . . . . . 8  |-  ( 1  =/=  2  ->  ( { <. 1 ,  2
>. ,  <. 2 ,  1 >. } `  2
)  =  1 )
6848, 67ax-mp 5 . . . . . . 7  |-  ( {
<. 1 ,  2
>. ,  <. 2 ,  1 >. } `  2
)  =  1
6966, 68syl6eq 2439 . . . . . 6  |-  ( Q  =  { <. 1 ,  2 >. ,  <. 2 ,  1 >. }  ->  ( Q ` 
2 )  =  1 )
70693ad2ant2 1016 . . . . 5  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  ( Q `  2 )  =  1 )
7170oveq1d 6211 . . . 4  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
( Q `  2
) M 2 )  =  ( 1 M 2 ) )
7265, 71eqtrd 2423 . . 3  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  2
)  =  ( 1 M 2 ) )
7355, 72oveq12d 6214 . 2  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  (
( ( n  e.  N  |->  ( ( Q `
 n ) M n ) ) ` 
1 )  .x.  (
( n  e.  N  |->  ( ( Q `  n ) M n ) ) `  2
) )  =  ( ( 2 M 1 )  .x.  ( 1 M 2 ) ) )
7433, 73eqtrd 2423 1  |-  ( ( R  e.  Ring  /\  Q  =  { <. 1 ,  2
>. ,  <. 2 ,  1 >. }  /\  M  e.  B )  ->  ( G  gsumg  ( n  e.  N  |->  ( ( Q `  n ) M n ) ) )  =  ( ( 2 M 1 )  .x.  (
1 M 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1826    =/= wne 2577   A.wral 2732   _Vcvv 3034   {cpr 3946   <.cop 3950    |-> cmpt 4425   -->wf 5492   ` cfv 5496  (class class class)co 6196   1c1 9404   NNcn 10452   2c2 10502   Basecbs 14634   +g cplusg 14702    gsumg cgsu 14848   SymGrpcsymg 16519  mulGrpcmgp 17254   Ringcrg 17311   Mat cmat 18994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491  ax-cnex 9459  ax-resscn 9460  ax-1cn 9461  ax-icn 9462  ax-addcl 9463  ax-addrcl 9464  ax-mulcl 9465  ax-mulrcl 9466  ax-mulcom 9467  ax-addass 9468  ax-mulass 9469  ax-distr 9470  ax-i2m1 9471  ax-1ne0 9472  ax-1rid 9473  ax-rnegex 9474  ax-rrecex 9475  ax-cnre 9476  ax-pre-lttri 9477  ax-pre-lttrn 9478  ax-pre-ltadd 9479  ax-pre-mulgt0 9480
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-nel 2580  df-ral 2737  df-rex 2738  df-reu 2739  df-rmo 2740  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-ot 3953  df-uni 4164  df-int 4200  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-lim 4797  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-riota 6158  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-om 6600  df-1st 6699  df-2nd 6700  df-supp 6818  df-recs 6960  df-rdg 6994  df-1o 7048  df-2o 7049  df-oadd 7052  df-er 7229  df-map 7340  df-pm 7341  df-ixp 7389  df-en 7436  df-dom 7437  df-sdom 7438  df-fin 7439  df-fsupp 7745  df-sup 7816  df-card 8233  df-cda 8461  df-pnf 9541  df-mnf 9542  df-xr 9543  df-ltxr 9544  df-le 9545  df-sub 9720  df-neg 9721  df-div 10124  df-nn 10453  df-2 10511  df-3 10512  df-4 10513  df-5 10514  df-6 10515  df-7 10516  df-8 10517  df-9 10518  df-10 10519  df-n0 10713  df-z 10782  df-dec 10896  df-uz 11002  df-fz 11594  df-seq 12011  df-fac 12256  df-bc 12283  df-hash 12308  df-struct 14636  df-ndx 14637  df-slot 14638  df-base 14639  df-sets 14640  df-ress 14641  df-plusg 14715  df-mulr 14716  df-sca 14718  df-vsca 14719  df-ip 14720  df-tset 14721  df-ple 14722  df-ds 14724  df-hom 14726  df-cco 14727  df-0g 14849  df-gsum 14850  df-prds 14855  df-pws 14857  df-symg 16520  df-mgp 17255  df-sra 17931  df-rgmod 17932  df-dsmm 18854  df-frlm 18869  df-mat 18995
This theorem is referenced by:  m2detleib  19218
  Copyright terms: Public domain W3C validator