MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1p1sr Structured version   Unicode version

Theorem m1p1sr 9458
Description: Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.)
Assertion
Ref Expression
m1p1sr  |-  ( -1R 
+R  1R )  =  0R

Proof of Theorem m1p1sr
StepHypRef Expression
1 df-m1r 9429 . . 3  |-  -1R  =  [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R
2 df-1r 9428 . . 3  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
31, 2oveq12i 6287 . 2  |-  ( -1R 
+R  1R )  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
4 df-0r 9427 . . 3  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
5 1pr 9382 . . . . 5  |-  1P  e.  P.
6 addclpr 9385 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
75, 5, 6mp2an 672 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
8 addsrpr 9441 . . . . 5  |-  ( ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R  +R  [
<. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P ) >. ]  ~R  )
95, 7, 7, 5, 8mp4an 673 . . . 4  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P 
+P.  1P )  +P.  1P ) >. ]  ~R
10 addasspr 9389 . . . . . 6  |-  ( ( 1P  +P.  1P )  +P.  1P )  =  ( 1P  +P.  ( 1P  +P.  1P ) )
1110oveq2i 6286 . . . . 5  |-  ( 1P 
+P.  ( ( 1P 
+P.  1P )  +P.  1P ) )  =  ( 1P  +P.  ( 1P 
+P.  ( 1P  +P.  1P ) ) )
12 addclpr 9385 . . . . . . 7  |-  ( ( 1P  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( 1P  +P.  ( 1P  +P.  1P ) )  e.  P. )
135, 7, 12mp2an 672 . . . . . 6  |-  ( 1P 
+P.  ( 1P  +P.  1P ) )  e.  P.
14 addclpr 9385 . . . . . . 7  |-  ( ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. )  ->  (
( 1P  +P.  1P )  +P.  1P )  e. 
P. )
157, 5, 14mp2an 672 . . . . . 6  |-  ( ( 1P  +P.  1P )  +P.  1P )  e. 
P.
16 enreceq 9432 . . . . . 6  |-  ( ( ( 1P  e.  P.  /\  1P  e.  P. )  /\  ( ( 1P  +P.  ( 1P  +P.  1P ) )  e.  P.  /\  ( ( 1P  +P.  1P )  +P.  1P )  e.  P. ) )  ->  ( [ <. 1P ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P ) >. ]  ~R  <->  ( 1P  +P.  ( ( 1P  +P.  1P )  +P.  1P ) )  =  ( 1P 
+P.  ( 1P  +P.  ( 1P  +P.  1P ) ) ) ) )
175, 5, 13, 15, 16mp4an 673 . . . . 5  |-  ( [
<. 1P ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  ( 1P 
+P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P )
>. ]  ~R  <->  ( 1P  +P.  ( ( 1P  +P.  1P )  +P.  1P ) )  =  ( 1P 
+P.  ( 1P  +P.  ( 1P  +P.  1P ) ) ) )
1811, 17mpbir 209 . . . 4  |-  [ <. 1P ,  1P >. ]  ~R  =  [ <. ( 1P  +P.  ( 1P  +P.  1P ) ) ,  ( ( 1P  +P.  1P )  +P.  1P ) >. ]  ~R
199, 18eqtr4i 2492 . . 3  |-  ( [
<. 1P ,  ( 1P 
+P.  1P ) >. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. 1P ,  1P >. ]  ~R
204, 19eqtr4i 2492 . 2  |-  0R  =  ( [ <. 1P ,  ( 1P  +P.  1P )
>. ]  ~R  +R  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
213, 20eqtr4i 2492 1  |-  ( -1R 
+R  1R )  =  0R
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    = wceq 1374    e. wcel 1762   <.cop 4026  (class class class)co 6275   [cec 7299   P.cnp 9226   1Pc1p 9227    +P. cpp 9228    ~R cer 9231   0Rc0r 9233   1Rc1r 9234   -1Rcm1r 9235    +R cplr 9236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-omul 7125  df-er 7301  df-ec 7303  df-qs 7307  df-ni 9239  df-pli 9240  df-mi 9241  df-lti 9242  df-plpq 9275  df-mpq 9276  df-ltpq 9277  df-enq 9278  df-nq 9279  df-erq 9280  df-plq 9281  df-mq 9282  df-1nq 9283  df-rq 9284  df-ltnq 9285  df-np 9348  df-1p 9349  df-plp 9350  df-ltp 9352  df-enr 9422  df-nr 9423  df-plr 9424  df-0r 9427  df-1r 9428  df-m1r 9429
This theorem is referenced by:  pn0sr  9467  supsrlem  9477  axi2m1  9525
  Copyright terms: Public domain W3C validator