MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1lgs Structured version   Unicode version

Theorem m1lgs 22723
Description: The first supplement to the law of quadratic reciprocity. Negative one is a square mod an odd prime  P iff  P  ==  1 mod 4. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
m1lgs  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1 ) )

Proof of Theorem m1lgs
StepHypRef Expression
1 neg1z 10702 . . . . . . . . 9  |-  -u 1  e.  ZZ
2 oddprm 13903 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
32nnnn0d 10657 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN0 )
4 zexpcl 11901 . . . . . . . . 9  |-  ( (
-u 1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  e.  ZZ )
51, 3, 4sylancr 663 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1 ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
65peano2zd 10771 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  e.  ZZ )
7 eldifi 3499 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
8 prmnn 13787 . . . . . . . 8  |-  ( P  e.  Prime  ->  P  e.  NN )
97, 8syl 16 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  NN )
106, 9zmodcld 11749 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  NN0 )
1110nn0cnd 10659 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  e.  CC )
12 ax-1cn 9361 . . . . . 6  |-  1  e.  CC
1312a1i 11 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  CC )
1411, 13, 13subaddd 9758 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
15 2re 10412 . . . . . . . 8  |-  2  e.  RR
1615a1i 11 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  RR )
179nnrpd 11047 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  RR+ )
18 0le2 10433 . . . . . . . 8  |-  0  <_  2
1918a1i 11 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
0  <_  2 )
20 eldifsni 4022 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
219nnred 10358 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  RR )
22 prmuz2 13802 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
237, 22syl 16 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ( ZZ>= ` 
2 ) )
24 eluzle 10894 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  ->  2  <_  P )
2523, 24syl 16 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <_  P )
2616, 21, 25leltned 9546 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  <  P  <->  P  =/=  2 ) )
2720, 26mpbird 232 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  <  P )
28 modid 11753 . . . . . . 7  |-  ( ( ( 2  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  2  /\  2  <  P ) )  ->  ( 2  mod  P )  =  2 )
2916, 17, 19, 27, 28syl22anc 1219 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  2 )
30 df-2 10401 . . . . . 6  |-  2  =  ( 1  +  1 )
3129, 30syl6eq 2491 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  mod  P
)  =  ( 1  +  1 ) )
3231eqeq1d 2451 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  ( 1  +  1 )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
3320neneqd 2627 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  =  2
)
34 2prm 13800 . . . . . . . . . . . 12  |-  2  e.  Prime
35 dvdsprm 13806 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  2  e.  Prime )  ->  ( P  ||  2  <->  P  = 
2 ) )
3623, 34, 35sylancl 662 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  2  <->  P  =  2 ) )
3733, 36mtbird 301 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  -.  P  ||  2 )
3837adantr 465 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  2 )
3912a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  1  e.  CC )
402adantr 465 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  NN )
41 simpr 461 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  2  ||  ( ( P  -  1 )  / 
2 ) )
42 oexpneg 13616 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  CC  /\  ( ( P  - 
1 )  /  2
)  e.  NN  /\  -.  2  ||  ( ( P  -  1 )  /  2 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  = 
-u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4339, 40, 41, 42syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u ( 1 ^ ( ( P  - 
1 )  /  2
) ) )
4440nnzd 10767 . . . . . . . . . . . . . . . . 17  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( P  -  1 )  /  2 )  e.  ZZ )
45 1exp 11914 . . . . . . . . . . . . . . . . 17  |-  ( ( ( P  -  1 )  /  2 )  e.  ZZ  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
4644, 45syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
1 ^ ( ( P  -  1 )  /  2 ) )  =  1 )
4746negeqd 9625 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -u (
1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
4843, 47eqtrd 2475 . . . . . . . . . . . . . 14  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  =  -u 1 )
4948oveq1d 6127 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  ( -u 1  +  1 ) )
50 neg1cn 10446 . . . . . . . . . . . . . 14  |-  -u 1  e.  CC
51 1pneg1e0 10451 . . . . . . . . . . . . . 14  |-  ( 1  +  -u 1 )  =  0
5212, 50, 51addcomli 9582 . . . . . . . . . . . . 13  |-  ( -u
1  +  1 )  =  0
5349, 52syl6eq 2491 . . . . . . . . . . . 12  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  =  0 )
5453oveq2d 6128 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  ( 2  -  0 ) )
55 2cn 10413 . . . . . . . . . . . 12  |-  2  e.  CC
5655subid1i 9701 . . . . . . . . . . 11  |-  ( 2  -  0 )  =  2
5754, 56syl6eq 2491 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  =  2 )
5857breq2d 4325 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  ( P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )  <->  P  ||  2
) )
5938, 58mtbird 301 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  -.  2  ||  ( ( P  - 
1 )  /  2
) )  ->  -.  P  ||  ( 2  -  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) ) )
6059ex 434 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -.  2  ||  ( ( P  - 
1 )  /  2
)  ->  -.  P  ||  ( 2  -  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) ) ) )
6160con4d 105 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  ||  (
2  -  ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 ) )  ->  2  ||  ( ( P  - 
1 )  /  2
) ) )
62 2z 10699 . . . . . . . 8  |-  2  e.  ZZ
6362a1i 11 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  ZZ )
64 moddvds 13563 . . . . . . 7  |-  ( ( P  e.  NN  /\  2  e.  ZZ  /\  (
( -u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  e.  ZZ )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
659, 63, 6, 64syl3anc 1218 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  P  ||  ( 2  -  ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 ) ) ) )
66 4nn 10502 . . . . . . . . . . 11  |-  4  e.  NN
6766nnzi 10691 . . . . . . . . . 10  |-  4  e.  ZZ
6867a1i 11 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  e.  ZZ )
69 4ne0 10439 . . . . . . . . . 10  |-  4  =/=  0
7069a1i 11 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  =/=  0 )
71 nnm1nn0 10642 . . . . . . . . . . 11  |-  ( P  e.  NN  ->  ( P  -  1 )  e.  NN0 )
729, 71syl 16 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  NN0 )
7372nn0zd 10766 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  ZZ )
74 dvdsval2 13559 . . . . . . . . 9  |-  ( ( 4  e.  ZZ  /\  4  =/=  0  /\  ( P  -  1 )  e.  ZZ )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
7568, 70, 73, 74syl3anc 1218 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( P  - 
1 )  /  4
)  e.  ZZ ) )
7672nn0cnd 10659 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( P  -  1 )  e.  CC )
7755a1i 11 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  e.  CC )
78 2ne0 10435 . . . . . . . . . . . 12  |-  2  =/=  0
7978a1i 11 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
2  =/=  0 )
8076, 77, 77, 79, 79divdiv1d 10159 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  ( 2  x.  2 ) ) )
81 2t2e4 10492 . . . . . . . . . . 11  |-  ( 2  x.  2 )  =  4
8281oveq2i 6123 . . . . . . . . . 10  |-  ( ( P  -  1 )  /  ( 2  x.  2 ) )  =  ( ( P  - 
1 )  /  4
)
8380, 82syl6eq 2491 . . . . . . . . 9  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( P  -  1 )  / 
2 )  /  2
)  =  ( ( P  -  1 )  /  4 ) )
8483eleq1d 2509 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( P  -  1 )  /  2 )  / 
2 )  e.  ZZ  <->  ( ( P  -  1 )  /  4 )  e.  ZZ ) )
8575, 84bitr4d 256 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
862nnzd 10767 . . . . . . . 8  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  ZZ )
87 dvdsval2 13559 . . . . . . . 8  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  (
( P  -  1 )  /  2 )  e.  ZZ )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
8863, 79, 86, 87syl3anc 1218 . . . . . . 7  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  ||  (
( P  -  1 )  /  2 )  <-> 
( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )
8985, 88bitr4d 256 . . . . . 6  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  <->  2  ||  ( ( P  -  1 )  /  2 ) ) )
9061, 65, 893imtr4d 268 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  ->  4  ||  ( P  -  1
) ) )
9150a1i 11 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1  e.  CC )
92 neg1ne0 10448 . . . . . . . . . . . 12  |-  -u 1  =/=  0
9392a1i 11 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  -u 1  =/=  0 )
9462a1i 11 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  e.  ZZ )
9585biimpa 484 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( (
( P  -  1 )  /  2 )  /  2 )  e.  ZZ )
96 expmulz 11931 . . . . . . . . . . 11  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
2  e.  ZZ  /\  ( ( ( P  -  1 )  / 
2 )  /  2
)  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
9791, 93, 94, 95, 96syl22anc 1219 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( ( ( P  -  1 )  / 
2 )  /  2
) ) )
982nncnd 10359 . . . . . . . . . . . . 13  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  CC )
9998, 77, 79divcan2d 10130 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 2  x.  (
( ( P  - 
1 )  /  2
)  /  2 ) )  =  ( ( P  -  1 )  /  2 ) )
10099adantr 465 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  x.  ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  ( ( P  - 
1 )  /  2
) )
101100oveq2d 6128 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( 2  x.  ( ( ( P  -  1 )  / 
2 )  /  2
) ) )  =  ( -u 1 ^ ( ( P  - 
1 )  /  2
) ) )
102 neg1sqe1 11982 . . . . . . . . . . . 12  |-  ( -u
1 ^ 2 )  =  1
103102oveq1i 6122 . . . . . . . . . . 11  |-  ( (
-u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  ( 1 ^ ( ( ( P  -  1 )  / 
2 )  /  2
) )
104 1exp 11914 . . . . . . . . . . . 12  |-  ( ( ( ( P  - 
1 )  /  2
)  /  2 )  e.  ZZ  ->  (
1 ^ ( ( ( P  -  1 )  /  2 )  /  2 ) )  =  1 )
10595, 104syl 16 . . . . . . . . . . 11  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 1 ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
106103, 105syl5eq 2487 . . . . . . . . . 10  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ 2 ) ^ ( ( ( P  -  1 )  /  2 )  / 
2 ) )  =  1 )
10797, 101, 1063eqtr3d 2483 . . . . . . . . 9  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  =  1 )
108107oveq1d 6127 . . . . . . . 8  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( ( -u 1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  =  ( 1  +  1 ) )
109108, 30syl6reqr 2494 . . . . . . 7  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  2  =  ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 ) )
110109oveq1d 6127 . . . . . 6  |-  ( ( P  e.  ( Prime  \  { 2 } )  /\  4  ||  ( P  -  1 ) )  ->  ( 2  mod  P )  =  ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P ) )
111110ex 434 . . . . 5  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( 4  ||  ( P  -  1 )  ->  ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
) ) )
11290, 111impbid 191 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( 2  mod 
P )  =  ( ( ( -u 1 ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  <->  4  ||  ( P  -  1 ) ) )
11314, 32, 1123bitr2d 281 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1  <->  4  ||  ( P  -  1 ) ) )
114 lgsval3 22675 . . . . 5  |-  ( (
-u 1  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -u 1  /L P )  =  ( ( ( (
-u 1 ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 ) )
1151, 114mpan 670 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( -u 1  /L
P )  =  ( ( ( ( -u
1 ^ ( ( P  -  1 )  /  2 ) )  +  1 )  mod 
P )  -  1 ) )
116115eqeq1d 2451 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( ( ( ( -u 1 ^ ( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  =  1 ) )
11766a1i 11 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
4  e.  NN )
118 prmz 13788 . . . . 5  |-  ( P  e.  Prime  ->  P  e.  ZZ )
1197, 118syl 16 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  ZZ )
120 1z 10697 . . . . 5  |-  1  e.  ZZ
121120a1i 11 . . . 4  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
1  e.  ZZ )
122 moddvds 13563 . . . 4  |-  ( ( 4  e.  NN  /\  P  e.  ZZ  /\  1  e.  ZZ )  ->  (
( P  mod  4
)  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1
) ) )
123117, 119, 121, 122syl3anc 1218 . . 3  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  mod  4 )  =  ( 1  mod  4 )  <->  4  ||  ( P  -  1 ) ) )
124113, 116, 1233bitr4d 285 . 2  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  ( 1  mod  4 ) ) )
125 1re 9406 . . . 4  |-  1  e.  RR
126 nnrp 11021 . . . . 5  |-  ( 4  e.  NN  ->  4  e.  RR+ )
12766, 126ax-mp 5 . . . 4  |-  4  e.  RR+
128 0le1 9884 . . . 4  |-  0  <_  1
129 1lt4 10514 . . . 4  |-  1  <  4
130 modid 11753 . . . 4  |-  ( ( ( 1  e.  RR  /\  4  e.  RR+ )  /\  ( 0  <_  1  /\  1  <  4
) )  ->  (
1  mod  4 )  =  1 )
131125, 127, 128, 129, 130mp4an 673 . . 3  |-  ( 1  mod  4 )  =  1
132131eqeq2i 2453 . 2  |-  ( ( P  mod  4 )  =  ( 1  mod  4 )  <->  ( P  mod  4 )  =  1 )
133124, 132syl6bb 261 1  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( -u 1  /L P )  =  1  <->  ( P  mod  4 )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2620    \ cdif 3346   {csn 3898   class class class wbr 4313   ` cfv 5439  (class class class)co 6112   CCcc 9301   RRcr 9302   0cc0 9303   1c1 9304    + caddc 9306    x. cmul 9308    < clt 9439    <_ cle 9440    - cmin 9616   -ucneg 9617    / cdiv 10014   NNcn 10343   2c2 10392   4c4 10394   NN0cn0 10600   ZZcz 10667   ZZ>=cuz 10882   RR+crp 11012    mod cmo 11729   ^cexp 11886    || cdivides 13556   Primecprime 13784    /Lclgs 22655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-om 6498  df-1st 6598  df-2nd 6599  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-map 7237  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-sup 7712  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-n0 10601  df-z 10668  df-uz 10883  df-q 10975  df-rp 11013  df-fz 11459  df-fzo 11570  df-fl 11663  df-mod 11730  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-dvds 13557  df-gcd 13712  df-prm 13785  df-phi 13862  df-pc 13925  df-lgs 22656
This theorem is referenced by:  2sqlem11  22736  2sqblem  22738
  Copyright terms: Public domain W3C validator