MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m1expaddsub Structured version   Visualization version   Unicode version

Theorem m1expaddsub 17217
Description: Addition and subtraction of parities are the same. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
m1expaddsub  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( -u 1 ^ ( X  -  Y
) )  =  (
-u 1 ^ ( X  +  Y )
) )

Proof of Theorem m1expaddsub
StepHypRef Expression
1 m1expcl 12333 . . . . . 6  |-  ( X  e.  ZZ  ->  ( -u 1 ^ X )  e.  ZZ )
21zcnd 11064 . . . . 5  |-  ( X  e.  ZZ  ->  ( -u 1 ^ X )  e.  CC )
32adantr 472 . . . 4  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( -u 1 ^ X )  e.  CC )
4 m1expcl 12333 . . . . . 6  |-  ( Y  e.  ZZ  ->  ( -u 1 ^ Y )  e.  ZZ )
54zcnd 11064 . . . . 5  |-  ( Y  e.  ZZ  ->  ( -u 1 ^ Y )  e.  CC )
65adantl 473 . . . 4  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( -u 1 ^ Y )  e.  CC )
7 neg1cn 10735 . . . . . 6  |-  -u 1  e.  CC
8 neg1ne0 10737 . . . . . 6  |-  -u 1  =/=  0
9 expne0i 12342 . . . . . 6  |-  ( (
-u 1  e.  CC  /\  -u 1  =/=  0  /\  Y  e.  ZZ )  ->  ( -u 1 ^ Y )  =/=  0
)
107, 8, 9mp3an12 1380 . . . . 5  |-  ( Y  e.  ZZ  ->  ( -u 1 ^ Y )  =/=  0 )
1110adantl 473 . . . 4  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( -u 1 ^ Y )  =/=  0
)
123, 6, 11divrecd 10408 . . 3  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( -u 1 ^ X )  /  ( -u 1 ^ Y ) )  =  ( (
-u 1 ^ X
)  x.  ( 1  /  ( -u 1 ^ Y ) ) ) )
13 m1expcl2 12332 . . . . . 6  |-  ( Y  e.  ZZ  ->  ( -u 1 ^ Y )  e.  { -u 1 ,  1 } )
14 elpri 3976 . . . . . 6  |-  ( (
-u 1 ^ Y
)  e.  { -u
1 ,  1 }  ->  ( ( -u
1 ^ Y )  =  -u 1  \/  ( -u 1 ^ Y )  =  1 ) )
15 ax-1cn 9615 . . . . . . . . . 10  |-  1  e.  CC
16 ax-1ne0 9626 . . . . . . . . . 10  |-  1  =/=  0
17 divneg2 10353 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  1  e.  CC  /\  1  =/=  0 )  ->  -u (
1  /  1 )  =  ( 1  /  -u 1 ) )
1815, 15, 16, 17mp3an 1390 . . . . . . . . 9  |-  -u (
1  /  1 )  =  ( 1  /  -u 1 )
19 1div1e1 10322 . . . . . . . . . 10  |-  ( 1  /  1 )  =  1
2019negeqi 9888 . . . . . . . . 9  |-  -u (
1  /  1 )  =  -u 1
2118, 20eqtr3i 2495 . . . . . . . 8  |-  ( 1  /  -u 1 )  = 
-u 1
22 oveq2 6316 . . . . . . . 8  |-  ( (
-u 1 ^ Y
)  =  -u 1  ->  ( 1  /  ( -u 1 ^ Y ) )  =  ( 1  /  -u 1 ) )
23 id 22 . . . . . . . 8  |-  ( (
-u 1 ^ Y
)  =  -u 1  ->  ( -u 1 ^ Y )  =  -u
1 )
2421, 22, 233eqtr4a 2531 . . . . . . 7  |-  ( (
-u 1 ^ Y
)  =  -u 1  ->  ( 1  /  ( -u 1 ^ Y ) )  =  ( -u
1 ^ Y ) )
25 oveq2 6316 . . . . . . . 8  |-  ( (
-u 1 ^ Y
)  =  1  -> 
( 1  /  ( -u 1 ^ Y ) )  =  ( 1  /  1 ) )
26 id 22 . . . . . . . 8  |-  ( (
-u 1 ^ Y
)  =  1  -> 
( -u 1 ^ Y
)  =  1 )
2719, 25, 263eqtr4a 2531 . . . . . . 7  |-  ( (
-u 1 ^ Y
)  =  1  -> 
( 1  /  ( -u 1 ^ Y ) )  =  ( -u
1 ^ Y ) )
2824, 27jaoi 386 . . . . . 6  |-  ( ( ( -u 1 ^ Y )  =  -u
1  \/  ( -u
1 ^ Y )  =  1 )  -> 
( 1  /  ( -u 1 ^ Y ) )  =  ( -u
1 ^ Y ) )
2913, 14, 283syl 18 . . . . 5  |-  ( Y  e.  ZZ  ->  (
1  /  ( -u
1 ^ Y ) )  =  ( -u
1 ^ Y ) )
3029adantl 473 . . . 4  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( 1  /  ( -u 1 ^ Y ) )  =  ( -u
1 ^ Y ) )
3130oveq2d 6324 . . 3  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( -u 1 ^ X )  x.  (
1  /  ( -u
1 ^ Y ) ) )  =  ( ( -u 1 ^ X )  x.  ( -u 1 ^ Y ) ) )
3212, 31eqtrd 2505 . 2  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( -u 1 ^ X )  /  ( -u 1 ^ Y ) )  =  ( (
-u 1 ^ X
)  x.  ( -u
1 ^ Y ) ) )
33 expsub 12358 . . 3  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( -u 1 ^ ( X  -  Y )
)  =  ( (
-u 1 ^ X
)  /  ( -u
1 ^ Y ) ) )
347, 8, 33mpanl12 696 . 2  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( -u 1 ^ ( X  -  Y
) )  =  ( ( -u 1 ^ X )  /  ( -u 1 ^ Y ) ) )
35 expaddz 12354 . . 3  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ ) )  -> 
( -u 1 ^ ( X  +  Y )
)  =  ( (
-u 1 ^ X
)  x.  ( -u
1 ^ Y ) ) )
367, 8, 35mpanl12 696 . 2  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( -u 1 ^ ( X  +  Y
) )  =  ( ( -u 1 ^ X )  x.  ( -u 1 ^ Y ) ) )
3732, 34, 363eqtr4d 2515 1  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( -u 1 ^ ( X  -  Y
) )  =  (
-u 1 ^ ( X  +  Y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   {cpr 3961  (class class class)co 6308   CCcc 9555   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    - cmin 9880   -ucneg 9881    / cdiv 10291   ZZcz 10961   ^cexp 12310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-seq 12252  df-exp 12311
This theorem is referenced by:  psgnuni  17218  41prothprmlem2  39063
  Copyright terms: Public domain W3C validator