Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lzenom Structured version   Unicode version

Theorem lzenom 30908
Description: Lower integers are countably infinite. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
lzenom  |-  ( N  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  ~~  om )

Proof of Theorem lzenom
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zex 10894 . . . 4  |-  ZZ  e.  _V
2 difexg 4604 . . . 4  |-  ( ZZ  e.  _V  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  e.  _V )
31, 2mp1i 12 . . 3  |-  ( N  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  e.  _V )
4 nnex 10562 . . . 4  |-  NN  e.  _V
54a1i 11 . . 3  |-  ( N  e.  ZZ  ->  NN  e.  _V )
6 ovex 6324 . . . 4  |-  ( ( N  +  1 )  -  a )  e. 
_V
76a1ii 27 . . 3  |-  ( N  e.  ZZ  ->  (
a  e.  ( ZZ 
\  ( ZZ>= `  ( N  +  1 ) ) )  ->  (
( N  +  1 )  -  a )  e.  _V ) )
8 ovex 6324 . . . 4  |-  ( ( N  +  1 )  -  b )  e. 
_V
98a1ii 27 . . 3  |-  ( N  e.  ZZ  ->  (
b  e.  NN  ->  ( ( N  +  1 )  -  b )  e.  _V ) )
10 simpl 457 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  N  e.  ZZ )
1110peano2zd 10993 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( N  +  1 )  e.  ZZ )
12 simprl 756 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  e.  ZZ )
1311, 12zsubcld 10995 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( ( N  +  1 )  -  a )  e.  ZZ )
14 zre 10889 . . . . . . . . . 10  |-  ( a  e.  ZZ  ->  a  e.  RR )
1514ad2antrl 727 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  e.  RR )
1611zred 10990 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( N  +  1 )  e.  RR )
17 1red 9628 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  1  e.  RR )
18 simprr 757 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  <_  N )
19 zcn 10890 . . . . . . . . . . . 12  |-  ( N  e.  ZZ  ->  N  e.  CC )
2019adantr 465 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  N  e.  CC )
21 ax-1cn 9567 . . . . . . . . . . 11  |-  1  e.  CC
22 pncan 9845 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
2320, 21, 22sylancl 662 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( ( N  +  1 )  -  1 )  =  N )
2418, 23breqtrrd 4482 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  <_  ( ( N  +  1 )  -  1 ) )
2515, 16, 17, 24lesubd 10177 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  1  <_  ( ( N  +  1 )  -  a ) )
2611zcnd 10991 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( N  +  1 )  e.  CC )
27 zcn 10890 . . . . . . . . . . 11  |-  ( a  e.  ZZ  ->  a  e.  CC )
2827ad2antrl 727 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  e.  CC )
2926, 28nncand 9955 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( ( N  +  1 )  -  ( ( N  +  1 )  -  a ) )  =  a )
3029eqcomd 2465 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  a  =  ( ( N  + 
1 )  -  (
( N  +  1 )  -  a ) ) )
3113, 25, 30jca31 534 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( a  e.  ZZ  /\  a  <_  N )
)  ->  ( (
( ( N  + 
1 )  -  a
)  e.  ZZ  /\  1  <_  ( ( N  +  1 )  -  a ) )  /\  a  =  ( ( N  +  1 )  -  ( ( N  +  1 )  -  a ) ) ) )
3231adantrr 716 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) )  ->  ( ( ( ( N  +  1 )  -  a )  e.  ZZ  /\  1  <_  ( ( N  + 
1 )  -  a
) )  /\  a  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  a
) ) ) )
33 eleq1 2529 . . . . . . . . 9  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
b  e.  ZZ  <->  ( ( N  +  1 )  -  a )  e.  ZZ ) )
34 breq2 4460 . . . . . . . . 9  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
1  <_  b  <->  1  <_  ( ( N  +  1 )  -  a ) ) )
3533, 34anbi12d 710 . . . . . . . 8  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
( b  e.  ZZ  /\  1  <_  b )  <->  ( ( ( N  + 
1 )  -  a
)  e.  ZZ  /\  1  <_  ( ( N  +  1 )  -  a ) ) ) )
36 oveq2 6304 . . . . . . . . 9  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
( N  +  1 )  -  b )  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  a
) ) )
3736eqeq2d 2471 . . . . . . . 8  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
a  =  ( ( N  +  1 )  -  b )  <->  a  =  ( ( N  + 
1 )  -  (
( N  +  1 )  -  a ) ) ) )
3835, 37anbi12d 710 . . . . . . 7  |-  ( b  =  ( ( N  +  1 )  -  a )  ->  (
( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) )  <->  ( (
( ( N  + 
1 )  -  a
)  e.  ZZ  /\  1  <_  ( ( N  +  1 )  -  a ) )  /\  a  =  ( ( N  +  1 )  -  ( ( N  +  1 )  -  a ) ) ) ) )
3938ad2antll 728 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) )  ->  ( ( ( b  e.  ZZ  /\  1  <_  b )  /\  a  =  ( ( N  +  1 )  -  b ) )  <-> 
( ( ( ( N  +  1 )  -  a )  e.  ZZ  /\  1  <_ 
( ( N  + 
1 )  -  a
) )  /\  a  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  a
) ) ) ) )
4032, 39mpbird 232 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) )  ->  ( ( b  e.  ZZ  /\  1  <_  b )  /\  a  =  ( ( N  +  1 )  -  b ) ) )
41 simpl 457 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  N  e.  ZZ )
4241peano2zd 10993 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( N  +  1 )  e.  ZZ )
43 simprl 756 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  b  e.  ZZ )
4442, 43zsubcld 10995 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  b )  e.  ZZ )
4542zred 10990 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( N  +  1 )  e.  RR )
46 zre 10889 . . . . . . . . . 10  |-  ( N  e.  ZZ  ->  N  e.  RR )
4746adantr 465 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  N  e.  RR )
48 zre 10889 . . . . . . . . . 10  |-  ( b  e.  ZZ  ->  b  e.  RR )
4948ad2antrl 727 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  b  e.  RR )
5047recnd 9639 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  N  e.  CC )
51 pncan2 9846 . . . . . . . . . . 11  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  N
)  =  1 )
5250, 21, 51sylancl 662 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  N )  =  1 )
53 simprr 757 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  1  <_  b )
5452, 53eqbrtrd 4476 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  N )  <_ 
b )
5545, 47, 49, 54subled 10176 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  b )  <_  N )
5642zcnd 10991 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( N  +  1 )  e.  CC )
57 zcn 10890 . . . . . . . . . . 11  |-  ( b  e.  ZZ  ->  b  e.  CC )
5857ad2antrl 727 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  b  e.  CC )
5956, 58nncand 9955 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( ( N  +  1 )  -  ( ( N  +  1 )  -  b ) )  =  b )
6059eqcomd 2465 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  b  =  ( ( N  + 
1 )  -  (
( N  +  1 )  -  b ) ) )
6144, 55, 60jca31 534 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( b  e.  ZZ  /\  1  <_  b )
)  ->  ( (
( ( N  + 
1 )  -  b
)  e.  ZZ  /\  ( ( N  + 
1 )  -  b
)  <_  N )  /\  b  =  (
( N  +  1 )  -  ( ( N  +  1 )  -  b ) ) ) )
6261adantrr 716 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) ) )  ->  ( ( ( ( N  +  1 )  -  b )  e.  ZZ  /\  (
( N  +  1 )  -  b )  <_  N )  /\  b  =  ( ( N  +  1 )  -  ( ( N  +  1 )  -  b ) ) ) )
63 eleq1 2529 . . . . . . . . 9  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
a  e.  ZZ  <->  ( ( N  +  1 )  -  b )  e.  ZZ ) )
64 breq1 4459 . . . . . . . . 9  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
a  <_  N  <->  ( ( N  +  1 )  -  b )  <_  N ) )
6563, 64anbi12d 710 . . . . . . . 8  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
( a  e.  ZZ  /\  a  <_  N )  <->  ( ( ( N  + 
1 )  -  b
)  e.  ZZ  /\  ( ( N  + 
1 )  -  b
)  <_  N )
) )
66 oveq2 6304 . . . . . . . . 9  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
( N  +  1 )  -  a )  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  b
) ) )
6766eqeq2d 2471 . . . . . . . 8  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
b  =  ( ( N  +  1 )  -  a )  <->  b  =  ( ( N  + 
1 )  -  (
( N  +  1 )  -  b ) ) ) )
6865, 67anbi12d 710 . . . . . . 7  |-  ( a  =  ( ( N  +  1 )  -  b )  ->  (
( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) )  <->  ( (
( ( N  + 
1 )  -  b
)  e.  ZZ  /\  ( ( N  + 
1 )  -  b
)  <_  N )  /\  b  =  (
( N  +  1 )  -  ( ( N  +  1 )  -  b ) ) ) ) )
6968ad2antll 728 . . . . . 6  |-  ( ( N  e.  ZZ  /\  ( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) ) )  ->  ( ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) )  <-> 
( ( ( ( N  +  1 )  -  b )  e.  ZZ  /\  ( ( N  +  1 )  -  b )  <_  N )  /\  b  =  ( ( N  +  1 )  -  ( ( N  + 
1 )  -  b
) ) ) ) )
7062, 69mpbird 232 . . . . 5  |-  ( ( N  e.  ZZ  /\  ( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) ) )  ->  ( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) )
7140, 70impbida 832 . . . 4  |-  ( N  e.  ZZ  ->  (
( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) )  <->  ( (
b  e.  ZZ  /\  1  <_  b )  /\  a  =  ( ( N  +  1 )  -  b ) ) ) )
72 ellz1 30905 . . . . 5  |-  ( N  e.  ZZ  ->  (
a  e.  ( ZZ 
\  ( ZZ>= `  ( N  +  1 ) ) )  <->  ( a  e.  ZZ  /\  a  <_  N ) ) )
7372anbi1d 704 . . . 4  |-  ( N  e.  ZZ  ->  (
( a  e.  ( ZZ  \  ( ZZ>= `  ( N  +  1
) ) )  /\  b  =  ( ( N  +  1 )  -  a ) )  <-> 
( ( a  e.  ZZ  /\  a  <_  N )  /\  b  =  ( ( N  +  1 )  -  a ) ) ) )
74 elnnz1 10911 . . . . . 6  |-  ( b  e.  NN  <->  ( b  e.  ZZ  /\  1  <_ 
b ) )
7574a1i 11 . . . . 5  |-  ( N  e.  ZZ  ->  (
b  e.  NN  <->  ( b  e.  ZZ  /\  1  <_ 
b ) ) )
7675anbi1d 704 . . . 4  |-  ( N  e.  ZZ  ->  (
( b  e.  NN  /\  a  =  ( ( N  +  1 )  -  b ) )  <-> 
( ( b  e.  ZZ  /\  1  <_ 
b )  /\  a  =  ( ( N  +  1 )  -  b ) ) ) )
7771, 73, 763bitr4d 285 . . 3  |-  ( N  e.  ZZ  ->  (
( a  e.  ( ZZ  \  ( ZZ>= `  ( N  +  1
) ) )  /\  b  =  ( ( N  +  1 )  -  a ) )  <-> 
( b  e.  NN  /\  a  =  ( ( N  +  1 )  -  b ) ) ) )
783, 5, 7, 9, 77en2d 7570 . 2  |-  ( N  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  ~~  NN )
79 nnenom 12093 . 2  |-  NN  ~~  om
80 entr 7586 . 2  |-  ( ( ( ZZ  \  ( ZZ>=
`  ( N  + 
1 ) ) ) 
~~  NN  /\  NN  ~~  om )  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  ~~  om )
8178, 79, 80sylancl 662 1  |-  ( N  e.  ZZ  ->  ( ZZ  \  ( ZZ>= `  ( N  +  1 ) ) )  ~~  om )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   _Vcvv 3109    \ cdif 3468   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   omcom 6699    ~~ cen 7532   CCcc 9507   RRcr 9508   1c1 9510    + caddc 9512    <_ cle 9646    - cmin 9824   NNcn 10556   ZZcz 10885   ZZ>=cuz 11106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107
This theorem is referenced by:  diophin  30911  diophren  30951
  Copyright terms: Public domain W3C validator