MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lvecvsn0 Structured version   Visualization version   Unicode version

Theorem lvecvsn0 18325
Description: A scalar product is nonzero iff both of its factors are nonzero. (Contributed by NM, 3-Jan-2015.)
Hypotheses
Ref Expression
lvecmul0or.v  |-  V  =  ( Base `  W
)
lvecmul0or.s  |-  .x.  =  ( .s `  W )
lvecmul0or.f  |-  F  =  (Scalar `  W )
lvecmul0or.k  |-  K  =  ( Base `  F
)
lvecmul0or.o  |-  O  =  ( 0g `  F
)
lvecmul0or.z  |-  .0.  =  ( 0g `  W )
lvecmul0or.w  |-  ( ph  ->  W  e.  LVec )
lvecmul0or.a  |-  ( ph  ->  A  e.  K )
lvecmul0or.x  |-  ( ph  ->  X  e.  V )
Assertion
Ref Expression
lvecvsn0  |-  ( ph  ->  ( ( A  .x.  X )  =/=  .0.  <->  ( A  =/=  O  /\  X  =/=  .0.  ) ) )

Proof of Theorem lvecvsn0
StepHypRef Expression
1 lvecmul0or.v . . . 4  |-  V  =  ( Base `  W
)
2 lvecmul0or.s . . . 4  |-  .x.  =  ( .s `  W )
3 lvecmul0or.f . . . 4  |-  F  =  (Scalar `  W )
4 lvecmul0or.k . . . 4  |-  K  =  ( Base `  F
)
5 lvecmul0or.o . . . 4  |-  O  =  ( 0g `  F
)
6 lvecmul0or.z . . . 4  |-  .0.  =  ( 0g `  W )
7 lvecmul0or.w . . . 4  |-  ( ph  ->  W  e.  LVec )
8 lvecmul0or.a . . . 4  |-  ( ph  ->  A  e.  K )
9 lvecmul0or.x . . . 4  |-  ( ph  ->  X  e.  V )
101, 2, 3, 4, 5, 6, 7, 8, 9lvecvs0or 18324 . . 3  |-  ( ph  ->  ( ( A  .x.  X )  =  .0.  <->  ( A  =  O  \/  X  =  .0.  )
) )
1110necon3abid 2659 . 2  |-  ( ph  ->  ( ( A  .x.  X )  =/=  .0.  <->  -.  ( A  =  O  \/  X  =  .0.  ) ) )
12 neanior 2715 . 2  |-  ( ( A  =/=  O  /\  X  =/=  .0.  )  <->  -.  ( A  =  O  \/  X  =  .0.  )
)
1311, 12syl6bbr 267 1  |-  ( ph  ->  ( ( A  .x.  X )  =/=  .0.  <->  ( A  =/=  O  /\  X  =/=  .0.  ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    = wceq 1443    e. wcel 1886    =/= wne 2621   ` cfv 5581  (class class class)co 6288   Basecbs 15114  Scalarcsca 15186   .scvsca 15187   0gc0g 15331   LVecclvec 18318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-tpos 6970  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-nn 10607  df-2 10665  df-3 10666  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-0g 15333  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-grp 16666  df-minusg 16667  df-mgp 17717  df-ur 17729  df-ring 17775  df-oppr 17844  df-dvdsr 17862  df-unit 17863  df-invr 17893  df-drng 17970  df-lmod 18086  df-lvec 18319
This theorem is referenced by:  lspsneq  18338  lspfixed  18344  dochkr1  35040  mapdpglem18  35251  hdmap14lem4a  35436  lindssnlvec  40266
  Copyright terms: Public domain W3C validator